Bakhtiar Amaludin, Seifedine Kadry, Fung Fung Ting, David Taniar
{"title":"Toward more accurate diagnosis of multiple sclerosis: Automated lesion segmentation in brain magnetic resonance image using modified U-Net model","authors":"Bakhtiar Amaludin, Seifedine Kadry, Fung Fung Ting, David Taniar","doi":"10.1002/ima.22941","DOIUrl":null,"url":null,"abstract":"<p>Early diagnosis of multiple sclerosis (MS) through the delineation of lesions in the brain magnetic resonance imaging is important in preventing the deteriorating condition of MS. This study aims to develop a modified U-Net model for automating lesions segmentation in MS more accurately. The proposed modified U-Net uses residual dense blocks to replace the standard convolutional stacks and incorporates three axes (axial, sagittal, and coronal) of 2D slice images as input. Furthermore, a custom fusion method is also introduced for merging the predicted lesions from different axes. The model was implemented on ISBI2015 and OpenMS data sets. On ISBI2015, the proposed model achieves the best overall score of 93.090% and DSC of 0.857 on the OpenMS data set.</p>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ima.22941","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.22941","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Early diagnosis of multiple sclerosis (MS) through the delineation of lesions in the brain magnetic resonance imaging is important in preventing the deteriorating condition of MS. This study aims to develop a modified U-Net model for automating lesions segmentation in MS more accurately. The proposed modified U-Net uses residual dense blocks to replace the standard convolutional stacks and incorporates three axes (axial, sagittal, and coronal) of 2D slice images as input. Furthermore, a custom fusion method is also introduced for merging the predicted lesions from different axes. The model was implemented on ISBI2015 and OpenMS data sets. On ISBI2015, the proposed model achieves the best overall score of 93.090% and DSC of 0.857 on the OpenMS data set.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.