Alpha Skew Gaussian Naïve Bayes Classifier

Anderson Ara, F. Louzada
{"title":"Alpha Skew Gaussian Naïve Bayes Classifier","authors":"Anderson Ara, F. Louzada","doi":"10.1142/s0219622021500644","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to introduce a new procedure for a naïve Bayes classifier, namely alpha skew Gaussian naïve Bayes (ASGNB), which is based on a flexible generalization of the Gaussian distribution applied to continuous variables. As a direct advantage, this method can accommodate the possibility to handle with asymmetry in the uni or bimodal behavior. We provide the estimation procedure of this method, and we check the predictive performance when compared to other traditional classification methods using simulation studies and many real datasets with different application fields. The ASGNB is a powerful alternative to classification tasks when lie the presence of asymmetry of bimodality in the data and outperforms well when compared to other traditional classification methods in most of the cases analyzed.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"7 1","pages":"441-462"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The main goal of this paper is to introduce a new procedure for a naïve Bayes classifier, namely alpha skew Gaussian naïve Bayes (ASGNB), which is based on a flexible generalization of the Gaussian distribution applied to continuous variables. As a direct advantage, this method can accommodate the possibility to handle with asymmetry in the uni or bimodal behavior. We provide the estimation procedure of this method, and we check the predictive performance when compared to other traditional classification methods using simulation studies and many real datasets with different application fields. The ASGNB is a powerful alternative to classification tasks when lie the presence of asymmetry of bimodality in the data and outperforms well when compared to other traditional classification methods in most of the cases analyzed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alpha偏高斯Naïve贝叶斯分类器
本文的主要目标是为naïve贝叶斯分类器引入一种新的过程,即alpha偏态高斯naïve贝叶斯(ASGNB),它基于高斯分布应用于连续变量的灵活泛化。作为一个直接的优点,该方法可以适应在单峰或双峰行为中处理不对称的可能性。给出了该方法的估计步骤,并通过仿真研究和不同应用领域的大量真实数据集,对比了该方法的预测性能。当数据中存在双峰不对称时,ASGNB是一种强大的分类任务替代方案,并且在大多数分析情况下,与其他传统分类方法相比,ASGNB的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1