Topological magnets—their basic science and potential applications

Satoru Nakatsuji
{"title":"Topological magnets—their basic science and potential applications","authors":"Satoru Nakatsuji","doi":"10.1007/s43673-022-00046-3","DOIUrl":null,"url":null,"abstract":"<div><p>The performance limitations of conventional electronic materials pose a major problem in the era of digital transformation (DX). Consequently, extensive research is being conducted on the development of quantum materials that may overcome such limitations, by utilizing quantum effects to achieve remarkable performances. In particular, considerable progress has been made on the fundamental theories of topological magnets and has had a widespread impact on related fields of applied research. An important advance in the field of quantum manipulation is the development of the technology to control the quantum phase of conduction electron wavefunctions through the spin structure. This new technology has led to the realization of phenomena that had been considered infeasible for more than a century, such as the anomalous Hall effect in antiferromagnets and the giant magneto-thermoelectric effect in ferromagnets. This review article presents the remarkable properties of Weyl antiferromagnets and topological ferromagnets, which have been discovered recently. Additionally, this paper examines the current status of how advances in the basic principles of topological magnetism are facilitating the development of next-generation technologies that support the DX era, such as energy harvesting, heat flow sensors, and ultrafast nonvolatile memory.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-022-00046-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-022-00046-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance limitations of conventional electronic materials pose a major problem in the era of digital transformation (DX). Consequently, extensive research is being conducted on the development of quantum materials that may overcome such limitations, by utilizing quantum effects to achieve remarkable performances. In particular, considerable progress has been made on the fundamental theories of topological magnets and has had a widespread impact on related fields of applied research. An important advance in the field of quantum manipulation is the development of the technology to control the quantum phase of conduction electron wavefunctions through the spin structure. This new technology has led to the realization of phenomena that had been considered infeasible for more than a century, such as the anomalous Hall effect in antiferromagnets and the giant magneto-thermoelectric effect in ferromagnets. This review article presents the remarkable properties of Weyl antiferromagnets and topological ferromagnets, which have been discovered recently. Additionally, this paper examines the current status of how advances in the basic principles of topological magnetism are facilitating the development of next-generation technologies that support the DX era, such as energy harvesting, heat flow sensors, and ultrafast nonvolatile memory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拓扑磁体--其基础科学和潜在应用
在数字化转型(DX)时代,传统电子材料的性能限制构成了一个重大问题。因此,人们正在广泛研究开发量子材料,利用量子效应实现卓越性能,从而克服这些限制。其中,拓扑磁体的基础理论研究取得了长足进展,并对相关应用研究领域产生了广泛影响。量子操纵领域的一项重要进展是开发出了通过自旋结构控制传导电子波函数量子相位的技术。这项新技术使一个多世纪以来一直被认为不可行的现象得以实现,例如反铁磁体中的反常霍尔效应和铁磁体中的巨磁热电效应。这篇综述文章介绍了最近发现的韦尔反铁磁体和拓扑铁磁体的非凡特性。此外,本文还探讨了拓扑磁学基本原理的进展如何促进支持 DX 时代的下一代技术(如能量收集、热流传感器和超快非易失性存储器)的发展现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials Wavelength multicasting quantum clock synchronization network Non-equilibrium BCS-BEC crossover and unconventional FFLO superfluid in a strongly interacting driven-dissipative Fermi gas Publisher Correction: Density functional theory study of two-dimensional hybrid organic-inorganic perovskites: frontier level alignment and chirality-induced spin splitting Competing few-body correlations in ultracold Fermi polarons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1