Integrated Geophysical and Geotechnical Methods for Pre-Foundation Investigations

O IbrahimAdewuyi, O FalaePhilips
{"title":"Integrated Geophysical and Geotechnical Methods for Pre-Foundation Investigations","authors":"O IbrahimAdewuyi, O FalaePhilips","doi":"10.4172/2381-8719.1000453","DOIUrl":null,"url":null,"abstract":"An integrated geophysical and geotechnical investigation for a proposed building foundation of an industrial plant layout was carried out to determine the competency of the subsoil as foundation materials. Electrical Resistivity Imaging (ERI) and soil analyses techniques were adopted. Two traverses of four Vertical Electrical Sounding (VES) points were carried out and 8 Boreholes for Standard Penetration Test (SPT) were drilled. In addition soil samples were taken at 1.5 m and 10 m depths and subjected to various laboratory analyses. Three geoelectric layers were delineated from VES including topsoil, saturated sandy clay soil and limestone. The SPT N value indicates that the relative density of the soils is medium dense to very dense while the result of the geotechnical analyses shows that maximum dry density of the soils range from 1680-1900 kg/m3 and 1600-1850 kg/m3 respectively at 1.5 m and 10 m while the optimum moisture content range from 14-19% and 13-19% respectively at 1.5 m and 10 m. The soils are silty sand with low plasticity depiting low to medium swelling potential. Conclusively, the subsurface on which the foundation of the industrial structures will be located within the study area is safe and fairly competent for any engineering work. Owning to the water lodge nature of the area it is advice that the building should rest on pill between 5 m and 10 m depth.","PeriodicalId":80381,"journal":{"name":"AGSO journal of Australian geology & geophysics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGSO journal of Australian geology & geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2381-8719.1000453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An integrated geophysical and geotechnical investigation for a proposed building foundation of an industrial plant layout was carried out to determine the competency of the subsoil as foundation materials. Electrical Resistivity Imaging (ERI) and soil analyses techniques were adopted. Two traverses of four Vertical Electrical Sounding (VES) points were carried out and 8 Boreholes for Standard Penetration Test (SPT) were drilled. In addition soil samples were taken at 1.5 m and 10 m depths and subjected to various laboratory analyses. Three geoelectric layers were delineated from VES including topsoil, saturated sandy clay soil and limestone. The SPT N value indicates that the relative density of the soils is medium dense to very dense while the result of the geotechnical analyses shows that maximum dry density of the soils range from 1680-1900 kg/m3 and 1600-1850 kg/m3 respectively at 1.5 m and 10 m while the optimum moisture content range from 14-19% and 13-19% respectively at 1.5 m and 10 m. The soils are silty sand with low plasticity depiting low to medium swelling potential. Conclusively, the subsurface on which the foundation of the industrial structures will be located within the study area is safe and fairly competent for any engineering work. Owning to the water lodge nature of the area it is advice that the building should rest on pill between 5 m and 10 m depth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合地球物理和岩土工程方法的基础前期调查
为确定底土作为基础材料的能力,对某工业厂房规划的建筑基础进行了综合地球物理和岩土工程调查。采用电阻率成像(ERI)和土壤分析技术。对四个垂直电测深(VES)点进行了两次遍历,并钻了8个钻孔进行标准穿透试验(SPT)。此外,还在1.5米和10米深度处采集了土壤样本,并进行了各种实验室分析。通过地震探测圈定了表土、饱和砂质粘土和灰岩3个地电层。SPT N值表明土的相对密度为中密至极密;岩土力学分析结果表明,在1.5 m和10 m处,土的最大干密度分别为1680 ~ 1900 kg/m3和1600 ~ 1850 kg/m3;在1.5 m和10 m处,土的最佳含水率分别为14 ~ 19%和13 ~ 19%。土为粉砂质,塑性较低,具有低至中等膨胀势。总之,在研究区域内,工业结构基础所处的地下是安全的,完全可以进行任何工程工作。由于该地区的水屋性质,建议将建筑物置于5米至10米深的药丸上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geochemistry and Microthermometry of Fluid Inclusions of Cu and Fe Mineralization in North Khour Volcanic Rocks, Northwestern Birjand Explore the Metal Elements of Shahrebabak Based on Geophysical Data and Remote Sensing Geothermal Exploration by Seismoelectric Survey Sandstone Reservoirs Porosity and Water Saturation Estimation Using Functional Network Techniques Reservoir Delineation Employing Spectral Decomposition and Pre-Stack Inversion Techniques, Offshore Nile Delta, Egypt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1