Evidence of attraction between charge carriers in a doped Mott insulator

Emil Blomquist, J. Carlström
{"title":"Evidence of attraction between charge carriers in a doped Mott insulator","authors":"Emil Blomquist, J. Carlström","doi":"10.1103/PHYSREVRESEARCH.3.013272","DOIUrl":null,"url":null,"abstract":"Recent progress in optically trapped ultracold atomic gases is now making it possible to access microscopic observables in doped Mott insulators, which are the parent states of high-temperature superconductors. This makes it possible to address longstanding questions about the temperature scales at which attraction between charge carriers are present, and their mechanism. Controllable theoretical results for this problem are not available at low temperature due to the sign problem. In this work, we employ worm-algorithm Monte Carlo to obtain completely unbiased results for two charge carriers in a Mott insulator. Our method gives access to lower temperatures than what is currently possible in experiments, and provides evidence for attraction between dopants at a temperature scale that is now feasible in ultracold atomic systems. We also report on spin-correlations in the presence of charge carriers, which are directly comparable to experiments.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent progress in optically trapped ultracold atomic gases is now making it possible to access microscopic observables in doped Mott insulators, which are the parent states of high-temperature superconductors. This makes it possible to address longstanding questions about the temperature scales at which attraction between charge carriers are present, and their mechanism. Controllable theoretical results for this problem are not available at low temperature due to the sign problem. In this work, we employ worm-algorithm Monte Carlo to obtain completely unbiased results for two charge carriers in a Mott insulator. Our method gives access to lower temperatures than what is currently possible in experiments, and provides evidence for attraction between dopants at a temperature scale that is now feasible in ultracold atomic systems. We also report on spin-correlations in the presence of charge carriers, which are directly comparable to experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂莫特绝缘体中载流子间吸引的证据
光学捕获超冷原子气体的最新进展,现在使得在掺杂莫特绝缘体中获得微观观察成为可能,莫特绝缘体是高温超导体的母态。这使得解决长期存在的关于载流子之间存在吸引力的温度尺度及其机制的问题成为可能。由于符号问题,在低温条件下无法得到该问题的可控理论结果。在这项工作中,我们使用蠕虫算法蒙特卡罗获得了莫特绝缘体中两个载流子的完全无偏结果。我们的方法提供了比目前实验中可能的更低的温度,并提供了在超冷原子系统中可行的温度尺度下掺杂剂之间相互吸引的证据。我们还报告了在载流子存在下的自旋相关,这与实验直接可比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breathing mode in two-dimensional binary self-bound Bose-gas droplets Fast-forward scaling of atom-molecule conversion in Bose-Einstein condensates Relaxation in an extended bosonic Josephson junction Dynamic structure factors of a strongly interacting Fermi superfluid near an orbital Feshbach resonance across the phase transition from BCS to Sarma superfluid Stability of supercurrents in a superfluid phase of spin-1 bosons in an optical lattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1