A Bayesian Approach to Morphological Models Characterization

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2021-12-15 DOI:10.5566/ias.2641
B. Figliuzzi, Antoine Montaux-Lambert, F. Willot, Grégoire Naudin, Pierre Dupuis, B. Querleux, E. Huguet
{"title":"A Bayesian Approach to Morphological Models Characterization","authors":"B. Figliuzzi, Antoine Montaux-Lambert, F. Willot, Grégoire Naudin, Pierre Dupuis, B. Querleux, E. Huguet","doi":"10.5566/ias.2641","DOIUrl":null,"url":null,"abstract":"Morphological models are commonly used to describe microstructures observed in heterogeneous materials. Usually, these models depend upon a set of parameters that must be chosen carefully to match experimental observations conducted on the microstructure. A common approach to perform the parameters determination is to try to minimize an objective function, usually taken to be the discrepancy between measurements computed on the simulations and on the experimental observations, respectively. In this article, we present a Bayesian approach for determining the parameters of morphological models, based upon the definition of a posterior distribution for the parameters. A Monte Carlo Markov Chains (MCMC) algorithm is then used to generate samples from the posterior distribution and to identify a set of optimal parameters. We show on several examples that the Bayesian approach allows us to properly identify the optimal parameters of distinct morphological models and to identify potential correlations between the parameters of the models.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/ias.2641","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Morphological models are commonly used to describe microstructures observed in heterogeneous materials. Usually, these models depend upon a set of parameters that must be chosen carefully to match experimental observations conducted on the microstructure. A common approach to perform the parameters determination is to try to minimize an objective function, usually taken to be the discrepancy between measurements computed on the simulations and on the experimental observations, respectively. In this article, we present a Bayesian approach for determining the parameters of morphological models, based upon the definition of a posterior distribution for the parameters. A Monte Carlo Markov Chains (MCMC) algorithm is then used to generate samples from the posterior distribution and to identify a set of optimal parameters. We show on several examples that the Bayesian approach allows us to properly identify the optimal parameters of distinct morphological models and to identify potential correlations between the parameters of the models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态学模型表征的贝叶斯方法
形态学模型通常用于描述在非均质材料中观察到的微观结构。通常,这些模型依赖于一组必须仔细选择的参数,以匹配对微观结构进行的实验观察。执行参数确定的一种常用方法是尽量使目标函数最小化,目标函数通常被认为是分别在模拟和实验观察中计算的测量值之间的差异。在本文中,我们提出了一种贝叶斯方法来确定形态学模型的参数,基于参数后验分布的定义。然后使用蒙特卡洛马尔可夫链(MCMC)算法从后验分布中生成样本并识别一组最优参数。我们通过几个例子表明,贝叶斯方法使我们能够正确识别不同形态模型的最佳参数,并识别模型参数之间的潜在相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1