Mohammad M. Taheri, Triet M. Truong, S. Fields, W. Shafarman, B. McCandless, J. B. Baxter
{"title":"Quantifying Bulk and Surface Recombination in CdTe Solar Cells Using Time-Resolved Terahertz Spectroscopy","authors":"Mohammad M. Taheri, Triet M. Truong, S. Fields, W. Shafarman, B. McCandless, J. B. Baxter","doi":"10.1109/PVSC43889.2021.9518559","DOIUrl":null,"url":null,"abstract":"Understanding the nature of recombination mechanisms is essential for higher power conversion efficiency in photovoltaic (PV) devices. Here we use a combination of time-resolved terahertz spectroscopy and numerical modeling to determine the bulk Shockley-Read-Hall lifetime and interface and back surface recombination velocities in CdTe thin film stacks. The measurement was facilitated by fabricating wire-grid device structures using conventional laser scribing. Evaluation of a glass/FTO/SnO2/CdS/CdTe stack treated with CdCl2 allowed separation of the CdTe absorber bulk lifetime, 1.6 ns, from the back surface recombination velocity, ~6x104 cm/s, and indicated that CdTe/CdS interface recombination velocity had no significant impact on carrier dynamics.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"21 1","pages":"0648-0651"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the nature of recombination mechanisms is essential for higher power conversion efficiency in photovoltaic (PV) devices. Here we use a combination of time-resolved terahertz spectroscopy and numerical modeling to determine the bulk Shockley-Read-Hall lifetime and interface and back surface recombination velocities in CdTe thin film stacks. The measurement was facilitated by fabricating wire-grid device structures using conventional laser scribing. Evaluation of a glass/FTO/SnO2/CdS/CdTe stack treated with CdCl2 allowed separation of the CdTe absorber bulk lifetime, 1.6 ns, from the back surface recombination velocity, ~6x104 cm/s, and indicated that CdTe/CdS interface recombination velocity had no significant impact on carrier dynamics.