Rate-Invariant Autoencoding of Time-Series

K. Koneripalli, Suhas Lohit, Rushil Anirudh, P. Turaga
{"title":"Rate-Invariant Autoencoding of Time-Series","authors":"K. Koneripalli, Suhas Lohit, Rushil Anirudh, P. Turaga","doi":"10.1109/ICASSP40776.2020.9053983","DOIUrl":null,"url":null,"abstract":"For time-series classification and retrieval applications, an important requirement is to develop representations/metrics that are robust to re-parametrization of the time-axis. Temporal re-parametrization as a model can account for variability in the underlying generative process, sampling rate variations, or plain temporal mis-alignment. In this paper, we extend prior work in disentangling latent spaces of autoencoding models, to design a novel architecture to learn rate-invariant latent codes in a completely unsupervised fashion. Unlike conventional neural network architectures, this method allows to explicitly disentangle temporal parameters in the form of order-preserving diffeomorphisms with respect to a learnable template. This makes the latent space more easily interpretable. We show the efficacy of our approach on a synthetic dataset and a real dataset for hand action-recognition.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"7 1","pages":"3732-3736"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

For time-series classification and retrieval applications, an important requirement is to develop representations/metrics that are robust to re-parametrization of the time-axis. Temporal re-parametrization as a model can account for variability in the underlying generative process, sampling rate variations, or plain temporal mis-alignment. In this paper, we extend prior work in disentangling latent spaces of autoencoding models, to design a novel architecture to learn rate-invariant latent codes in a completely unsupervised fashion. Unlike conventional neural network architectures, this method allows to explicitly disentangle temporal parameters in the form of order-preserving diffeomorphisms with respect to a learnable template. This makes the latent space more easily interpretable. We show the efficacy of our approach on a synthetic dataset and a real dataset for hand action-recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列的率不变自编码
对于时间序列分类和检索应用程序,一个重要的要求是开发对时间轴的重新参数化具有鲁棒性的表示/度量。时间再参数化作为一种模型可以解释潜在生成过程中的可变性、采样率变化或简单的时间偏差。在本文中,我们扩展了先前在自动编码模型的潜在空间解纠缠方面的工作,设计了一种新的架构,以完全无监督的方式学习速率不变的潜在代码。与传统的神经网络体系结构不同,该方法允许以相对于可学习模板的保序微分同态的形式显式地解纠缠时间参数。这使得潜在空间更容易解释。我们在一个合成数据集和一个真实的手部动作识别数据集上展示了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Analysis of Multi-Carrier Agile Phased Array Radar Paco and Paco-Dct: Patch Consensus and Its Application To Inpainting Array-Geometry-Aware Spatial Active Noise Control Based on Direction-of-Arrival Weighting Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels Distributed Non-Orthogonal Pilot Design for Multi-Cell Massive Mimo Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1