{"title":"Quantum digital signatures with smaller public keys","authors":"B. Škorić","doi":"10.26421/QIC21.11-12-4","DOIUrl":null,"url":null,"abstract":"We introduce a variant of quantum signatures in which nonbinary symbols are signed instead of bits. The public keys are fingerprinting states, just as in the scheme of Gottesman and Chuang [1], but we allow for multiple ways to reveal the private key partially. The effect of this modification is a reduction of the number of qubits expended per message bit. Asymptotically the expenditure becomes as low as one qubit per message bit. We give a security proof, and we present numerical results that show how the improvement in public key size depends on the message length.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"11 1","pages":"955-973"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.11-12-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a variant of quantum signatures in which nonbinary symbols are signed instead of bits. The public keys are fingerprinting states, just as in the scheme of Gottesman and Chuang [1], but we allow for multiple ways to reveal the private key partially. The effect of this modification is a reduction of the number of qubits expended per message bit. Asymptotically the expenditure becomes as low as one qubit per message bit. We give a security proof, and we present numerical results that show how the improvement in public key size depends on the message length.