Globally Optimizing Owing to Tensor Decomposition

Arthur Marmin, M. Castella, J. Pesquet
{"title":"Globally Optimizing Owing to Tensor Decomposition","authors":"Arthur Marmin, M. Castella, J. Pesquet","doi":"10.23919/Eusipco47968.2020.9287511","DOIUrl":null,"url":null,"abstract":"While global optimization is a challenging topic in the nonconvex setting, a recent approach for optimizing polynomials reformulates the problem as an equivalent problem on measures, which is called a moment problem. It is then relaxed into a convex semidefinite programming problem whose solution gives the first moments of a measure supporting the optimal points. However, extracting the global solutions to the polynomial problem from those moments is still difficult, especially if the latter are poorly estimated. In this paper, we address the issue of extracting optimal points and interpret it as a tensor decomposition problem. By leveraging tools developed for noisy tensor decomposition, we propose a method to find the global solutions to a polynomial optimization problem from a noisy estimation of the solution of its corresponding moment problem. Finally, the interest of tensor decomposition methods for global polynomial optimization is shown through a detailed case study.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"76 1","pages":"990-994"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While global optimization is a challenging topic in the nonconvex setting, a recent approach for optimizing polynomials reformulates the problem as an equivalent problem on measures, which is called a moment problem. It is then relaxed into a convex semidefinite programming problem whose solution gives the first moments of a measure supporting the optimal points. However, extracting the global solutions to the polynomial problem from those moments is still difficult, especially if the latter are poorly estimated. In this paper, we address the issue of extracting optimal points and interpret it as a tensor decomposition problem. By leveraging tools developed for noisy tensor decomposition, we propose a method to find the global solutions to a polynomial optimization problem from a noisy estimation of the solution of its corresponding moment problem. Finally, the interest of tensor decomposition methods for global polynomial optimization is shown through a detailed case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量分解的全局优化
虽然全局优化在非凸环境中是一个具有挑战性的话题,但最近一种优化多项式的方法将问题重新表述为度量上的等效问题,即矩问题。然后将其松弛为一个凸半定规划问题,其解给出支持最优点的测度的首矩。然而,从这些矩中提取多项式问题的全局解仍然是困难的,特别是当后者的估计很差时。在本文中,我们解决了提取最优点的问题,并将其解释为张量分解问题。通过利用为噪声张量分解开发的工具,我们提出了一种方法,从其相应矩问题的解的噪声估计中找到多项式优化问题的全局解。最后,通过详细的实例分析,说明了张量分解方法在全局多项式优化中的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1