{"title":"Effect of Depth Surface Defects in Carbon Fibre Reinforced Composite Material on the Selected Recurrence Quantifications","authors":"K. Ciecieląg, K. Kęcik, K. Zaleski","doi":"10.2478/adms-2020-0011","DOIUrl":null,"url":null,"abstract":"Abstract The paper discusses the problem of possibility of the detecting surface defects in carbon fibre reinforced plastics (CFRP) materials on the basis of the milling time series. First, the special defects in the hole-shaped with various depth were made. Next, the cutting forces are measured during the milling machining. Finally, the recurrence plot and quantification analysis was applied. The obtained results show that the depth defect influences the selected recurrence quantifications, which can be used as the simple defect indicators. The conducted research allow to determine the percentage share of the detectable defects. The novelty of the work and an unresolved problem is the selection of recurrence quantifications with the simultaneous use of them to detect the size of defects in carbon fibre reinforced plastics.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/adms-2020-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract The paper discusses the problem of possibility of the detecting surface defects in carbon fibre reinforced plastics (CFRP) materials on the basis of the milling time series. First, the special defects in the hole-shaped with various depth were made. Next, the cutting forces are measured during the milling machining. Finally, the recurrence plot and quantification analysis was applied. The obtained results show that the depth defect influences the selected recurrence quantifications, which can be used as the simple defect indicators. The conducted research allow to determine the percentage share of the detectable defects. The novelty of the work and an unresolved problem is the selection of recurrence quantifications with the simultaneous use of them to detect the size of defects in carbon fibre reinforced plastics.