Beta Ziliani, Derek Dreyer, N. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis
{"title":"Mtac: a monad for typed tactic programming in Coq","authors":"Beta Ziliani, Derek Dreyer, N. Krishnaswami, Aleksandar Nanevski, Viktor Vafeiadis","doi":"10.1145/2500365.2500579","DOIUrl":null,"url":null,"abstract":"Effective support for custom proof automation is essential for large scale interactive proof development. However, existing languages for automation via *tactics* either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced type-theoretic machinery that is not easily integrated into established theorem provers. We present Mtac, a lightweight but powerful extension to Coq that supports dependently-typed tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives in a *monad*, and instrumenting Coq so that it executes monadic tactics during type inference.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83
Abstract
Effective support for custom proof automation is essential for large scale interactive proof development. However, existing languages for automation via *tactics* either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced type-theoretic machinery that is not easily integrated into established theorem provers. We present Mtac, a lightweight but powerful extension to Coq that supports dependently-typed tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives in a *monad*, and instrumenting Coq so that it executes monadic tactics during type inference.