Development of carbon materials for sulfur cathodes in inorganic-based solid-state lithium sulfur batteries

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Canadian Journal of Chemistry Pub Date : 2023-06-12 DOI:10.1139/cjc-2023-0012
Zhaoqing Yang, Qihang Yu, Anna Thinphang-nga, Xia Li
{"title":"Development of carbon materials for sulfur cathodes in inorganic-based solid-state lithium sulfur batteries","authors":"Zhaoqing Yang, Qihang Yu, Anna Thinphang-nga, Xia Li","doi":"10.1139/cjc-2023-0012","DOIUrl":null,"url":null,"abstract":"Inorganic-based solid-state lithium-sulfur batteries (SSLSBs) with high energy density and high safety have attracted wide attention as they are one of the most promising energy storage devices to meet future market requirements. However, the development of SSLSBs faces various challenges due to the unreasonable structural design in sulfur cathodes. Carbon is one of the indispensable components in sulfur cathodes. The rational design of carbon materials becomes an important strategy to address the challenges in sulfur cathodes. This review summarizes recent literature about the design and application of carbon materials for sulfur cathodes in inorganic-based SSLSBs. It starts with the introduction of different carbon materials from zero-dimensional (0D) to three-dimensional (3D) carbon materials. Particularly, this review paper highlights the structural design of carbon materials and the cathode fabrication methods, toward improving the conductivity of cathodes, buffering volume changes in cathodes, reducing interfacial resistance among cathode components, and increasing the mass loading of active materials. Finally, the existing challenges and promising solutions for carbon materials in the cathodes are discussed and proposed.","PeriodicalId":9420,"journal":{"name":"Canadian Journal of Chemistry","volume":"12 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1139/cjc-2023-0012","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Inorganic-based solid-state lithium-sulfur batteries (SSLSBs) with high energy density and high safety have attracted wide attention as they are one of the most promising energy storage devices to meet future market requirements. However, the development of SSLSBs faces various challenges due to the unreasonable structural design in sulfur cathodes. Carbon is one of the indispensable components in sulfur cathodes. The rational design of carbon materials becomes an important strategy to address the challenges in sulfur cathodes. This review summarizes recent literature about the design and application of carbon materials for sulfur cathodes in inorganic-based SSLSBs. It starts with the introduction of different carbon materials from zero-dimensional (0D) to three-dimensional (3D) carbon materials. Particularly, this review paper highlights the structural design of carbon materials and the cathode fabrication methods, toward improving the conductivity of cathodes, buffering volume changes in cathodes, reducing interfacial resistance among cathode components, and increasing the mass loading of active materials. Finally, the existing challenges and promising solutions for carbon materials in the cathodes are discussed and proposed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无机基固态锂硫电池硫阴极碳材料的研究
无机基固态锂硫电池(SSLSBs)具有高能量密度和高安全性,是满足未来市场需求的最有前途的储能设备之一,受到了广泛的关注。然而,由于硫阴极结构设计不合理,SSLSBs的发展面临着各种挑战。碳是硫阴极中不可缺少的成分之一。合理设计碳材料成为解决硫阴极挑战的重要策略。本文综述了近年来无机基SSLSBs中硫阴极碳材料的设计与应用。首先介绍不同的碳材料,从零维(0D)到三维(3D)碳材料。本文重点介绍了碳材料的结构设计和阴极制造方法,以提高阴极的导电性,缓冲阴极的体积变化,降低阴极组分之间的界面电阻,增加活性材料的质量负载。最后,讨论并提出了阴极碳材料存在的挑战和有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Chemistry
Canadian Journal of Chemistry 化学-化学综合
CiteScore
1.90
自引率
9.10%
发文量
99
审稿时长
1 months
期刊介绍: Published since 1929, the Canadian Journal of Chemistry reports current research findings in all branches of chemistry. It includes the traditional areas of analytical, inorganic, organic, and physical-theoretical chemistry and newer interdisciplinary areas such as materials science, spectroscopy, chemical physics, and biological, medicinal and environmental chemistry. Articles describing original research are welcomed.
期刊最新文献
The occurrence of cytokinins and their biosynthesis pathways in epithelioma papulosum cyprini cells A computational study of the structures and base-pairing properties of pyrrolizidine alkaloid-derived DNA adducts Synthesis of a Fluorescent Chemical Probe for Imaging of L-Type Voltage Gated Calcium Channels Synthesis of two air and moisture-stable copper(II)-N-heterocyclic carbene complexes Sex differences in mouse placental metabolite profiles: an NMR metabolomics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1