Structure and Conformation Study of the O-Antigen from the Lipopolysaccharide of Cupriavidus Metallidurans CH34

A. Notaro, Adele Vanacore, A. Molinaro, Immacolata Speciale, C. de Castro
{"title":"Structure and Conformation Study of the O-Antigen from the Lipopolysaccharide of Cupriavidus Metallidurans CH34","authors":"A. Notaro, Adele Vanacore, A. Molinaro, Immacolata Speciale, C. de Castro","doi":"10.3390/polysaccharides3010009","DOIUrl":null,"url":null,"abstract":"Cupriavidus metallidurans is a Gram-negative bacterium that has attracted the attention of the scientific community since its discovery back in 1976. It was initially studied as a model organism for bioremediation processes due to its ability to survive in heavy metal-rich environments. However, in recent years, there is evidence that this bacterium can be a potential pathogen for humans. How C. metallidurans can survive in such different environments is unknown and prompted the following work. Its great adaptability could be explained by the structural and conformational studies of the O-antigen portion of the lipopolysaccharide, the main constituent of the outer membrane of Gram-negative bacteria, which is the one in direct contact with the external environment. Therefore, a combination of chemical and spectroscopic analyses was used to define the O-antigen structure, disclosing that it is a polysaccharide constituted of a linear tetrasaccharide repeating unit that does not resemble other structures already reported for bacteria: [4)-α-d-GalNAc-(1→3)-α-d-Qui2NAc4NHBA-(1→3)-α-l-Rha-(1→3)-α-l-Rha-(1→]. Interestingly, the molecular dynamics studies revealed that the three-dimensional structure of the O-antigen is highly flexible: it might adopt three different right-handed helix conformations described by a two, three, or four-fold symmetry. This conformational behavior could represent the reason behind the survival of C. metallidurans in different environments.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides3010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cupriavidus metallidurans is a Gram-negative bacterium that has attracted the attention of the scientific community since its discovery back in 1976. It was initially studied as a model organism for bioremediation processes due to its ability to survive in heavy metal-rich environments. However, in recent years, there is evidence that this bacterium can be a potential pathogen for humans. How C. metallidurans can survive in such different environments is unknown and prompted the following work. Its great adaptability could be explained by the structural and conformational studies of the O-antigen portion of the lipopolysaccharide, the main constituent of the outer membrane of Gram-negative bacteria, which is the one in direct contact with the external environment. Therefore, a combination of chemical and spectroscopic analyses was used to define the O-antigen structure, disclosing that it is a polysaccharide constituted of a linear tetrasaccharide repeating unit that does not resemble other structures already reported for bacteria: [4)-α-d-GalNAc-(1→3)-α-d-Qui2NAc4NHBA-(1→3)-α-l-Rha-(1→3)-α-l-Rha-(1→]. Interestingly, the molecular dynamics studies revealed that the three-dimensional structure of the O-antigen is highly flexible: it might adopt three different right-handed helix conformations described by a two, three, or four-fold symmetry. This conformational behavior could represent the reason behind the survival of C. metallidurans in different environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属铜藻CH34脂多糖o抗原的结构与构象研究
金属铜球菌(Cupriavidus metallidurans)是一种革兰氏阴性细菌,自1976年被发现以来一直受到科学界的关注。由于它能够在富含重金属的环境中生存,因此最初被研究为生物修复过程的模式生物。然而,近年来,有证据表明这种细菌可能是人类的潜在病原体。C. metallidurans是如何在如此不同的环境中生存的尚不清楚,这促使了接下来的工作。革兰氏阴性菌外膜的主要成分脂多糖的o抗原部分是与外界环境直接接触的部分,其结构和构象研究可以解释其适应性强。因此,利用化学和光谱分析相结合的方法确定了o抗原的结构,发现它是一种由线性四糖重复单元组成的多糖,与已有报道的其他细菌结构不同:[4]-α-d- galnac -(1→3)-α-d- qui2nac4nhba -(1→3)-α-l- rha -(1→3)-α-l- rha -(1→3)]。有趣的是,分子动力学研究揭示了o抗原的三维结构是高度灵活的:它可能采用三种不同的右手螺旋构象,由二、三或四重对称描述。这种构象行为可能是C. metallidurans在不同环境下存活的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient (Bio)emulsification/Degradation of Crude Oil Using Cellulose Nanocrystals Advancing Paper Industry Applications with Extruded Cationic Wheat Starch as an Environmentally Friendly Biopolymer Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields Enzymatic Treatment of Ferulated Arabinoxylans from Distillers Dried Grains with Solubles: Influence on the Fabrication of Covalent Electro-Sprayed Nanoparticles In Vitro Biological Properties of Cyclodextrin-Based Polymers: Interaction with Human Serum Albumin, Red Blood Cells and Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1