Fault Estimation for A Class of Descriptor Systems - An Adaptive Robust Extended Kalman Filter Approach

Liang Kexin, Li Tiantian
{"title":"Fault Estimation for A Class of Descriptor Systems - An Adaptive Robust Extended Kalman Filter Approach","authors":"Liang Kexin, Li Tiantian","doi":"10.1109/ICMCCE51767.2020.00279","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive Robust Extended Klaman filter for a class of non-linear descriptor systems with unknown system noise. Firstly, a robust bound is given to decrease the influence of the linearization error on the estimation accuracy; an adaptive algorithm is introduced to implement an unbiased estimation of the noise, then; an numeral example is given to show the effectiveness of the method at last.","PeriodicalId":6712,"journal":{"name":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","volume":"40 1","pages":"1274-1278"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCCE51767.2020.00279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an adaptive Robust Extended Klaman filter for a class of non-linear descriptor systems with unknown system noise. Firstly, a robust bound is given to decrease the influence of the linearization error on the estimation accuracy; an adaptive algorithm is introduced to implement an unbiased estimation of the noise, then; an numeral example is given to show the effectiveness of the method at last.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类广义系统的故障估计——一种自适应鲁棒扩展卡尔曼滤波方法
针对一类系统噪声未知的非线性广义系统,提出了一种自适应鲁棒扩展Klaman滤波器。首先,给出了一个鲁棒界,以减小线性化误差对估计精度的影响;引入自适应算法实现对噪声的无偏估计;最后通过一个算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Analysis of Trajectory Control of Tire Bursting Vehicles Based on MPC Research on the Influence of Computer Application on Regional Economic Development Research on Intelligent Analysis Technology of Power Monitoring Video Data Based on Convolutional Neural Network Transmit digital multi-beam forming based on hyperbolic fractional delay filter An Improved Image Entropy Algorithm Suitable for Digital Painting Style
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1