{"title":"Detection of Adulteration of Panax Notoginseng Powder by Terahertz Technology","authors":"Bin Li, Hai-Long Yin, Aihong Yang, Aiguo Ouyang","doi":"10.1155/2022/7247941","DOIUrl":null,"url":null,"abstract":"The combined terahertz time-domain spectroscopy (THz-TDS) and chemometric technology is used to detect the adulteration of similar substances in Panax notoginseng powder. Four kinds of samples are prepared in the experiment, three kinds of adulterated samples are Panax notoginseng powder adulterating with zedoary turmeric powder, Panax notoginseng powder adulterating with wheat flour, and Panax notoginseng powder adulterating with rice flour, respectively. The values of adulterated concentration are from 5% to 60%, the interval of adulterated concentration is 5%, and the other sample is pure Panax notoginseng powder. The modeling and prediction sets are divided by 3 : 1 by class. The feature information of models is extracted by elimination of uninformative variable (UVE) method and successive projection algorithm (SPA); combining with back propagation neural network (BPNN), the UVE-BPNN and SPA-BPNN qualitative models are established, respectively. The model’s results show that the UVE-BPNN model is better; the classification accuracy of the prediction set of UVE-BPNN is 95%. Then, the least square support vector machine (LS-SVM) algorithm and partial least square (PLS) algorithm are used to establish the quantitative analysis model. The model’s results show that the LS-SVM model is better among the quantitative analysis models of zedoary turmeric powder and wheat flour, the correlation coefficient of prediction (RP) is 0.90 and 0.93 of LS-SVM, respectively, and the root mean square error of prediction (RMSEP) of LS-SVM is 0.072 and 0.068, respectively. Among the quantitative analysis models for rice noodles, the PLS model is better, with the RP of 0.94 and RMSEP of 0.06. The results show that the combined THz-TDS and chemometric technology can be used to determine the adulteration of similar substances in Panax notoginseng powder quickly, accurately, and nondestructively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/7247941","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The combined terahertz time-domain spectroscopy (THz-TDS) and chemometric technology is used to detect the adulteration of similar substances in Panax notoginseng powder. Four kinds of samples are prepared in the experiment, three kinds of adulterated samples are Panax notoginseng powder adulterating with zedoary turmeric powder, Panax notoginseng powder adulterating with wheat flour, and Panax notoginseng powder adulterating with rice flour, respectively. The values of adulterated concentration are from 5% to 60%, the interval of adulterated concentration is 5%, and the other sample is pure Panax notoginseng powder. The modeling and prediction sets are divided by 3 : 1 by class. The feature information of models is extracted by elimination of uninformative variable (UVE) method and successive projection algorithm (SPA); combining with back propagation neural network (BPNN), the UVE-BPNN and SPA-BPNN qualitative models are established, respectively. The model’s results show that the UVE-BPNN model is better; the classification accuracy of the prediction set of UVE-BPNN is 95%. Then, the least square support vector machine (LS-SVM) algorithm and partial least square (PLS) algorithm are used to establish the quantitative analysis model. The model’s results show that the LS-SVM model is better among the quantitative analysis models of zedoary turmeric powder and wheat flour, the correlation coefficient of prediction (RP) is 0.90 and 0.93 of LS-SVM, respectively, and the root mean square error of prediction (RMSEP) of LS-SVM is 0.072 and 0.068, respectively. Among the quantitative analysis models for rice noodles, the PLS model is better, with the RP of 0.94 and RMSEP of 0.06. The results show that the combined THz-TDS and chemometric technology can be used to determine the adulteration of similar substances in Panax notoginseng powder quickly, accurately, and nondestructively.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.