Image-Based Rendering

IF 3.8 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Foundations and Trends in Computer Graphics and Vision Pub Date : 2006-09-28 DOI:10.1561/0600000012
S. B. Kang, Yin Li, Xin Tong, H. Shum
{"title":"Image-Based Rendering","authors":"S. B. Kang, Yin Li, Xin Tong, H. Shum","doi":"10.1561/0600000012","DOIUrl":null,"url":null,"abstract":"Image-based rendering (IBR) is unique in that it requires computer graphics, computer vision, and image processing to join forces to solve a common goal, namely photorealistic rendering through the use of images. IBR as an area of research has been around for about ten years, and substantial progress has been achieved in effiectively capturing, representing, and rendering scenes. In this article, we survey the techniques used in IBR. Our survey shows that representations and rendering techniques can differ radically, depending on design decisions related to ease of capture, use of geometry, accuracy of geometry (if used), number and distribution of source images, degrees of freedom for virtual navigation, and expected scene complexity.","PeriodicalId":45662,"journal":{"name":"Foundations and Trends in Computer Graphics and Vision","volume":"174 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2006-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Computer Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/0600000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 57

Abstract

Image-based rendering (IBR) is unique in that it requires computer graphics, computer vision, and image processing to join forces to solve a common goal, namely photorealistic rendering through the use of images. IBR as an area of research has been around for about ten years, and substantial progress has been achieved in effiectively capturing, representing, and rendering scenes. In this article, we survey the techniques used in IBR. Our survey shows that representations and rendering techniques can differ radically, depending on design decisions related to ease of capture, use of geometry, accuracy of geometry (if used), number and distribution of source images, degrees of freedom for virtual navigation, and expected scene complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的渲染
基于图像的渲染(IBR)的独特之处在于它需要计算机图形学、计算机视觉和图像处理结合起来解决一个共同的目标,即通过使用图像进行逼真的渲染。IBR作为一个研究领域已经存在了大约十年,在有效捕获、表示和渲染场景方面已经取得了实质性的进展。在本文中,我们概述了IBR中使用的技术。我们的调查显示,表示和渲染技术可能会有根本的不同,这取决于与捕获的便利性、几何形状的使用、几何形状的准确性(如果使用的话)、源图像的数量和分布、虚拟导航的自由度以及预期的场景复杂性相关的设计决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations and Trends in Computer Graphics and Vision
Foundations and Trends in Computer Graphics and Vision COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
31.20
自引率
0.00%
发文量
1
期刊介绍: The growth in all aspects of research in the last decade has led to a multitude of new publications and an exponential increase in published research. Finding a way through the excellent existing literature and keeping up to date has become a major time-consuming problem. Electronic publishing has given researchers instant access to more articles than ever before. But which articles are the essential ones that should be read to understand and keep abreast with developments of any topic? To address this problem Foundations and Trends® in Computer Graphics and Vision publishes high-quality survey and tutorial monographs of the field. Each issue of Foundations and Trends® in Computer Graphics and Vision comprises a 50-100 page monograph written by research leaders in the field. Monographs that give tutorial coverage of subjects, research retrospectives as well as survey papers that offer state-of-the-art reviews fall within the scope of the journal.
期刊最新文献
Semantic Image Segmentation: Two Decades of Research Learning-based Visual Compression Computational Imaging Through Atmospheric Turbulence Vision-Language Pre-training: Basics, Recent Advances, and Future Trends Towards Better User Studies in Computer Graphics and Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1