{"title":"Lung nodule detection in CT using 3D convolutional neural networks","authors":"Xiaojie Huang, Junjie Shan, V. Vaidya","doi":"10.1109/ISBI.2017.7950542","DOIUrl":null,"url":null,"abstract":"We propose a new computer-aided detection system that uses 3D convolutional neural networks (CNN) for detecting lung nodules in low dose computed tomography. The system leverages both a priori knowledge about lung nodules and confounding anatomical structures and data-driven machine-learned features and classifier. Specifically, we generate nodule candidates using a local geometric-model-based filter and further reduce the structure variability by estimating the local orientation. The nodule candidates in the form of 3D cubes are fed into a deep 3D convolutional neural network that is trained to differentiate nodule and non-nodule inputs. We use data augmentation techniques to generate a large number of training examples and apply regularization to avoid overfitting. On a set of 99 CT scans, the proposed system achieved state-of-the-art performance and significantly outperformed a similar hybrid system that uses conventional shallow learning. The experimental results showed benefits of using a priori models to reduce the problem space for data-driven machine learning of complex deep neural networks. The results also showed the advantages of 3D CNN over 2D CNN in volumetric medical image analysis.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"36 1","pages":"379-383"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 163
Abstract
We propose a new computer-aided detection system that uses 3D convolutional neural networks (CNN) for detecting lung nodules in low dose computed tomography. The system leverages both a priori knowledge about lung nodules and confounding anatomical structures and data-driven machine-learned features and classifier. Specifically, we generate nodule candidates using a local geometric-model-based filter and further reduce the structure variability by estimating the local orientation. The nodule candidates in the form of 3D cubes are fed into a deep 3D convolutional neural network that is trained to differentiate nodule and non-nodule inputs. We use data augmentation techniques to generate a large number of training examples and apply regularization to avoid overfitting. On a set of 99 CT scans, the proposed system achieved state-of-the-art performance and significantly outperformed a similar hybrid system that uses conventional shallow learning. The experimental results showed benefits of using a priori models to reduce the problem space for data-driven machine learning of complex deep neural networks. The results also showed the advantages of 3D CNN over 2D CNN in volumetric medical image analysis.