Automatic detection of fetal health status from cardiotocography data using machine learning algorithms

Md Tamjid Rayhana, Asm Shamsul Arefina, Sabbir Ahmed Chowdhury
{"title":"Automatic detection of fetal health status from cardiotocography data using machine learning algorithms","authors":"Md Tamjid Rayhana, Asm Shamsul Arefina, Sabbir Ahmed Chowdhury","doi":"10.3329/jbas.v45i2.57206","DOIUrl":null,"url":null,"abstract":"A method for the automatic determination of the fetus health status using Cardiotocography (CTG) and computer-based machine learning algorithms was developed. Five computation friendly machine learning algorithms were used to create multiclass classification models to predict the fetus health status from secondary CTG dataset containing normal, suspected and pathologic data available at University California Irvine Machine Learning Repository. Furthermore, a comparative analysis among the built models was executed. According to the comparative analysis, the best model to automatically detect fetal health was the extreme gradient boosting algorithm-based model with an accuracy of 96.7% and an F1-Score of 0.963 in the pathologic class. This finding thus has the potential to diagnose fetal heart conditions unsupervised, and more efficiently and effectively.\nJ. Bangladesh Acad. Sci. 45(2); 155-167: December 2021","PeriodicalId":15109,"journal":{"name":"Journal of Bangladesh Academy of Sciences","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bangladesh Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jbas.v45i2.57206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A method for the automatic determination of the fetus health status using Cardiotocography (CTG) and computer-based machine learning algorithms was developed. Five computation friendly machine learning algorithms were used to create multiclass classification models to predict the fetus health status from secondary CTG dataset containing normal, suspected and pathologic data available at University California Irvine Machine Learning Repository. Furthermore, a comparative analysis among the built models was executed. According to the comparative analysis, the best model to automatically detect fetal health was the extreme gradient boosting algorithm-based model with an accuracy of 96.7% and an F1-Score of 0.963 in the pathologic class. This finding thus has the potential to diagnose fetal heart conditions unsupervised, and more efficiently and effectively. J. Bangladesh Acad. Sci. 45(2); 155-167: December 2021
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习算法从心脏造影数据中自动检测胎儿健康状况
提出了一种利用心脏造影(CTG)和基于计算机的机器学习算法自动测定胎儿健康状况的方法。使用五种计算友好的机器学习算法建立多类分类模型,从加利福尼亚大学欧文机器学习库提供的含有正常、疑似和病理数据的二级CTG数据集中预测胎儿健康状况。并对所建模型进行了对比分析。通过对比分析,基于极端梯度增强算法的模型是自动检测胎儿健康的最佳模型,准确率为96.7%,病理类F1-Score为0.963。因此,这一发现有可能在无人监督的情况下更有效地诊断胎儿心脏状况。科学通报,2011 (2);155-167: 2021年12月
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unveiling the unknown: a butterfly checklist of the Adampur forest in Bangladesh Effect of p-type doped buffer layer on the structural and magnetic properties of (Zn,Fe)Te dilute magnetic semiconductor T_0 Separation Axioms in Intuitionistic Topological Spaces Cyclic voltammetric behavior of crystal violet in aqueous solution: Correlation with dissolved states of cetyltrimethylammonium bromide Bacterial profiles and multi-drug resistance patterns in bacterial isolates associated with freshwater fish infections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1