{"title":"Multi-MW solar PV pumping system with capacity modulation and battery voltage support","authors":"Oluwaseun M. Akeyo, V. Rallabandi, D. Ionel","doi":"10.1109/ICRERA.2017.8191097","DOIUrl":null,"url":null,"abstract":"Solar photovoltaic (PV) renewable energy systems are undergoing major technological developments and large-scale field deployment and electric grid integration. This paper proposes a method of expanding the capacity of an existing irrigation farm with additional pumps powered by solar PV. The system includes PV arrays and battery energy storage connected to a common dc bus, which energizes an array of variable speed inverter driven pumps. Capacity modulation is achieved by energizing an optimal number of pumps required in order to meet a particular load demand with minimum supply energy. A grid connection to the dc bus of the power electronic system is established via a bidirectional converter, such that active and reactive power demands can be both serviced. The controls and the steady-state and transient performance of the system are implemented and simulated with the PSCADTM/EMTDCTM software.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"4 1","pages":"423-428"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Solar photovoltaic (PV) renewable energy systems are undergoing major technological developments and large-scale field deployment and electric grid integration. This paper proposes a method of expanding the capacity of an existing irrigation farm with additional pumps powered by solar PV. The system includes PV arrays and battery energy storage connected to a common dc bus, which energizes an array of variable speed inverter driven pumps. Capacity modulation is achieved by energizing an optimal number of pumps required in order to meet a particular load demand with minimum supply energy. A grid connection to the dc bus of the power electronic system is established via a bidirectional converter, such that active and reactive power demands can be both serviced. The controls and the steady-state and transient performance of the system are implemented and simulated with the PSCADTM/EMTDCTM software.