Finite-time Synchronization of Fractional-order Energy Resources Demand-Supply Hyperchaotic Systems via Fractional-order Prediction-based Feedback Control Strategy with Bio-inspired Multiobjective Optimization

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Computational and Nonlinear Dynamics Pub Date : 2022-12-13 DOI:10.1115/1.4056462
A. Soukkou, Y. Soukkou, S. Haddad, M. Benghanem, A. Rabhi
{"title":"Finite-time Synchronization of Fractional-order Energy Resources Demand-Supply Hyperchaotic Systems via Fractional-order Prediction-based Feedback Control Strategy with Bio-inspired Multiobjective Optimization","authors":"A. Soukkou, Y. Soukkou, S. Haddad, M. Benghanem, A. Rabhi","doi":"10.1115/1.4056462","DOIUrl":null,"url":null,"abstract":"\n The concept of fractional-order control (F-oC) is exploited in this paper to synchronize fractional-order dynamical systems. The addressed systems in this paper reflect the real physical phenomena characterized by the complicated relationship between supply and demand for energy resources in the Shanghai area. Thus, we provide the developed fractional energy resource attractor and the simulation results regarding synchronization under the proposed control law of the same fractional energy resource attractor. Note that most of the synchronization methods achieved excellent performance when dealing with complex continuous systems; however, no method addressed the synchronization problem of fractional-order energy resource systems based on the F-oC and modern optimization techniques, to the best of our knowledge. By designing the finite-time control theory, the finite-time full synchronization of two identical fractional-order energy resources demand-supply hyperchaotic systems (F-oERDSHSs) is investigated due to its performance. The advanced prediction-based fractional-order control law (Pb-FoCL) is established for finite-time synchronization of F-oERDSHSs. The design procedure becomes a multiobjective optimization problem of the knowledge base of the developed controller while satisfying the desired performance requirements. The Finite-Time Stability (F-TS) of the control-loop system is proved by using the finite-time Lyapunov stability theory. Furthermore, the Improved Artificial Hummingbird Algorithm (I-AHA) is used to find an optimal knowledge base of Pb-FoCL while achieving the design constraints. Simulation results are provided to verify the efficiency of the proposed control strategy.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056462","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

The concept of fractional-order control (F-oC) is exploited in this paper to synchronize fractional-order dynamical systems. The addressed systems in this paper reflect the real physical phenomena characterized by the complicated relationship between supply and demand for energy resources in the Shanghai area. Thus, we provide the developed fractional energy resource attractor and the simulation results regarding synchronization under the proposed control law of the same fractional energy resource attractor. Note that most of the synchronization methods achieved excellent performance when dealing with complex continuous systems; however, no method addressed the synchronization problem of fractional-order energy resource systems based on the F-oC and modern optimization techniques, to the best of our knowledge. By designing the finite-time control theory, the finite-time full synchronization of two identical fractional-order energy resources demand-supply hyperchaotic systems (F-oERDSHSs) is investigated due to its performance. The advanced prediction-based fractional-order control law (Pb-FoCL) is established for finite-time synchronization of F-oERDSHSs. The design procedure becomes a multiobjective optimization problem of the knowledge base of the developed controller while satisfying the desired performance requirements. The Finite-Time Stability (F-TS) of the control-loop system is proved by using the finite-time Lyapunov stability theory. Furthermore, the Improved Artificial Hummingbird Algorithm (I-AHA) is used to find an optimal knowledge base of Pb-FoCL while achieving the design constraints. Simulation results are provided to verify the efficiency of the proposed control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物多目标优化的分数阶预测反馈控制策略的分数阶能源供需超混沌系统有限时间同步
本文利用分数阶控制(F-oC)的概念实现分数阶动力系统的同步。本文研究的系统反映了上海地区能源供需关系复杂的真实物理现象。在此基础上,给出了所开发的分数阶能量吸引子,以及在相同分数阶能量吸引子控制律下的同步仿真结果。请注意,大多数同步方法在处理复杂连续系统时都取得了优异的性能;然而,就我们所知,没有一种方法能解决基于F-oC和现代优化技术的分数阶能源系统的同步问题。通过设计有限时间控制理论,研究了两个相同分数阶能源供需超混沌系统的有限时间全同步问题。建立了基于超前预测的分数阶控制律(Pb-FoCL),用于f - overerdshss的有限时间同步。在满足预期性能要求的情况下,设计过程成为对所开发控制器知识库进行多目标优化的问题。利用有限时间李雅普诺夫稳定性理论证明了控制环系统的有限时间稳定性。在此基础上,利用改进的人工蜂鸟算法(I-AHA),在满足设计约束条件的同时,找到了最优的pcb - focl知识库。仿真结果验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
10.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.
期刊最新文献
Energy Transfer and Dissipation in Combined-Stiffness Nonlinear Energy Sink Systems Synchronization of a Class of Nonlinear Systems With and Without Uncertainty Using State Feedback and Extended Kalman Filter Based Control Scheme Optimal Control of Mechanical Systems Based On Path-Fitted Variational Integrators Motor Bearing Fault Diagnosis in an Industrial Robot Under Complex Variable Speed Conditions A Computational Conformal Geometry Approach to Calculate the Large Deformations of Plates/shells with Arbitrary Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1