The Effects of Spaceflight on Mucin Production in the Mouse Uterus

A. Forsman, H. Nier
{"title":"The Effects of Spaceflight on Mucin Production in the Mouse Uterus","authors":"A. Forsman, H. Nier","doi":"10.2478/gsr-2013-0002","DOIUrl":null,"url":null,"abstract":"ABSTRACT The effects of microgravity on biological tissues are relatively unexplored, especially in regard to the mammalian female reproductive system. To begin to address this issue, the uterine tissue of female mice flown on NASA shuttle mission STS-118 was studied. Three sets of female mice, each consisting of 12 animals, were utilized in this study: flight animals, ground control animals, and baseline animals. The flight animals were housed in the Animal Enclosure Module (AEM) of the Commercial Biomedical Testing Module-2 (CBMT-2), which was a part of the payload of the shuttle’s mid-deck locker. Ground control animals were housed in ground-based AEMs, which were kept in a room specifically designed to mimic the environmental conditions of the flight units with regard to temperature, humidity, and light/dark cycles on a 48 hour delay. Baseline animals were housed in standard rodent cages at ambient temperature and humidity and a 12/12 light/dark cycle. The uterine tissue was stained using an Alcian Blue Periodic Acid Schiff staining procedure and the apical mucin layer thickness was subsequently analyzed. Analysis of the mucin layer in the uterus revealed that the thickness of the mucin layer in the flight tissue was significantly thicker that the mucin layers of the ground control and baseline tissue.","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/gsr-2013-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

ABSTRACT The effects of microgravity on biological tissues are relatively unexplored, especially in regard to the mammalian female reproductive system. To begin to address this issue, the uterine tissue of female mice flown on NASA shuttle mission STS-118 was studied. Three sets of female mice, each consisting of 12 animals, were utilized in this study: flight animals, ground control animals, and baseline animals. The flight animals were housed in the Animal Enclosure Module (AEM) of the Commercial Biomedical Testing Module-2 (CBMT-2), which was a part of the payload of the shuttle’s mid-deck locker. Ground control animals were housed in ground-based AEMs, which were kept in a room specifically designed to mimic the environmental conditions of the flight units with regard to temperature, humidity, and light/dark cycles on a 48 hour delay. Baseline animals were housed in standard rodent cages at ambient temperature and humidity and a 12/12 light/dark cycle. The uterine tissue was stained using an Alcian Blue Periodic Acid Schiff staining procedure and the apical mucin layer thickness was subsequently analyzed. Analysis of the mucin layer in the uterus revealed that the thickness of the mucin layer in the flight tissue was significantly thicker that the mucin layers of the ground control and baseline tissue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太空飞行对小鼠子宫黏液蛋白产生的影响
微重力对生物组织的影响尚未得到充分研究,尤其是对哺乳动物雌性生殖系统的影响。为了解决这个问题,研究人员研究了NASA航天飞机STS-118任务中雌性小鼠的子宫组织。本研究采用三组雌性小鼠,每组12只,分别为飞行鼠、地面对照鼠和基线鼠。这些飞行动物被安置在商业生物医学测试模块-2 (CBMT-2)的动物封闭模块(AEM)中,该模块是航天飞机中层储物柜有效载荷的一部分。地面控制动物被安置在地面AEMs中,这些AEMs被放置在一个专门设计的房间里,模拟飞行单元的环境条件,包括48小时延迟的温度、湿度和光/暗循环。基线动物被安置在标准啮齿动物笼中,环境温度和湿度,12/12光/暗循环。采用阿利新蓝周期酸希夫染色法对子宫组织进行染色,并分析子宫顶端黏液层厚度。子宫黏液层分析显示,飞行组织黏液层的厚度明显比地面对照和基线组织的黏液层厚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. Design, Build and Testing of Hardware to Safely Harvest Microgreens in Microgravity A Novel Approach to Teaching a General Education Course on Astrobiology Nonlinear Agglomeration of Bimodal Colloids under Microgravity Design of Spaceflight Hardware for Plant Growth in a Sealed Habitat for Experiments on the Moon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1