Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm
{"title":"Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm","authors":"T. Sakamoto","doi":"10.14358/pers.21-00003r2","DOIUrl":null,"url":null,"abstract":"An early crop classification method is functionally required in a near-real-time crop-yield prediction system, especially for upland crops. This study proposes methods to estimate the mixed-pixel ratio of corn, soybean, and other classes within a low-resolution MODIS pixel by coupling\n MODIS-derived crop phenology information and the past Cropland Data Layer in a random-forest regression algorithm. Verification of the classification accuracy was conducted for the Midwestern United States. The following conclusions are drawn: The use of the random-forest algorithm is effective\n in estimating the mixed-pixel ratio, which leads to stable classification accuracy; the fusion of historical data and MODIS-derived crop phenology information provides much better crop classification accuracy than when these are used individually; and the input of a longer MODIS data period\n can improve classification accuracy, especially after day of year 279, because of improved estimation accuracy for the soybean emergence date.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"22 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/pers.21-00003r2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
An early crop classification method is functionally required in a near-real-time crop-yield prediction system, especially for upland crops. This study proposes methods to estimate the mixed-pixel ratio of corn, soybean, and other classes within a low-resolution MODIS pixel by coupling
MODIS-derived crop phenology information and the past Cropland Data Layer in a random-forest regression algorithm. Verification of the classification accuracy was conducted for the Midwestern United States. The following conclusions are drawn: The use of the random-forest algorithm is effective
in estimating the mixed-pixel ratio, which leads to stable classification accuracy; the fusion of historical data and MODIS-derived crop phenology information provides much better crop classification accuracy than when these are used individually; and the input of a longer MODIS data period
can improve classification accuracy, especially after day of year 279, because of improved estimation accuracy for the soybean emergence date.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.