{"title":"Polaritons in Defect-Containing Lattice of Coupled Micro Resonators","authors":"Rumyantsev","doi":"10.4172/2469-410X.1000E108","DOIUrl":null,"url":null,"abstract":"Results in crystal optics obtained during the past fifty years provide a solid foundation for the progress of modern photonics. Concepts developed in the physics of crystalline solids can potentially be applied to the physics of photonic super crystals. While the theory of impurity bands and excitons in semiconductor crystals has been constructed in 1970-1980, an analogous theory for photonic crystals is yet to be completed. Recent experiments and theoretical investigations reveal an intense interest for polartonic structures and systems of coupled micro resonators [1], whose applications include fabrication of clockworks of unprecedented accuracy [2,3] as well as the sources of coherent irradiation. There has been a significant advance in the photonics of imperfect structures. A number of our recent works have been devoted to optical activity of imperfect photonic crystals [4] and to dispersion of exciton-like electromagnetic excitations in non-ideal lattices of coupled micro resonators [5,6].","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000E108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Results in crystal optics obtained during the past fifty years provide a solid foundation for the progress of modern photonics. Concepts developed in the physics of crystalline solids can potentially be applied to the physics of photonic super crystals. While the theory of impurity bands and excitons in semiconductor crystals has been constructed in 1970-1980, an analogous theory for photonic crystals is yet to be completed. Recent experiments and theoretical investigations reveal an intense interest for polartonic structures and systems of coupled micro resonators [1], whose applications include fabrication of clockworks of unprecedented accuracy [2,3] as well as the sources of coherent irradiation. There has been a significant advance in the photonics of imperfect structures. A number of our recent works have been devoted to optical activity of imperfect photonic crystals [4] and to dispersion of exciton-like electromagnetic excitations in non-ideal lattices of coupled micro resonators [5,6].