Region-based custom chip description formats for reanalysis of publicly available affymetrix® genechip® data sets

Ernur Saka, Benjamin J. Harrison, Kirk L. West, J. Petruska, E. Rouchka
{"title":"Region-based custom chip description formats for reanalysis of publicly available affymetrix® genechip® data sets","authors":"Ernur Saka, Benjamin J. Harrison, Kirk L. West, J. Petruska, E. Rouchka","doi":"10.1109/ICCABS.2016.7802781","DOIUrl":null,"url":null,"abstract":"Commercially developed microarrays, such as those from Agilent® and Affymetrix®, allow for the analysis of differential gene expression changes on a genome-wide scale. Publicly repositories of microarray data, most notably ArrayExpress and the Gene Expression Omnibus (GEO) have made available millions of microarray samples to researchers worldwide. One of the drawbacks of microarray technology is the static construction of probes based on current genomic knowledge and gene annotation information available at the design phase. As the knowledge base about genes expands, including alternative isoform formation and alternative polyadenylation signaling, the need for a dynamically changing approach to microarray expression analysis has become apparent. We have therefore designed a framework for the reanalysis of publicly available microarray datasets by updating probe set construction based on gene, transcript, and region-based (UTR, exon, CDS) annotations. Our analysis of two publicly available GEO series, GSE48611 and GSE72551, illustrate that the analysis of expression changes using different annotation groupings yields additional insight into changes in transcript expression, in particular, 3' UTR dynamics, which are likely to present phenotypical differences.","PeriodicalId":89933,"journal":{"name":"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences","volume":"1 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ... International Conference on Computational Advances in Bio and Medical Sciences : [proceedings]. IEEE International Conference on Computational Advances in Bio and Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCABS.2016.7802781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Commercially developed microarrays, such as those from Agilent® and Affymetrix®, allow for the analysis of differential gene expression changes on a genome-wide scale. Publicly repositories of microarray data, most notably ArrayExpress and the Gene Expression Omnibus (GEO) have made available millions of microarray samples to researchers worldwide. One of the drawbacks of microarray technology is the static construction of probes based on current genomic knowledge and gene annotation information available at the design phase. As the knowledge base about genes expands, including alternative isoform formation and alternative polyadenylation signaling, the need for a dynamically changing approach to microarray expression analysis has become apparent. We have therefore designed a framework for the reanalysis of publicly available microarray datasets by updating probe set construction based on gene, transcript, and region-based (UTR, exon, CDS) annotations. Our analysis of two publicly available GEO series, GSE48611 and GSE72551, illustrate that the analysis of expression changes using different annotation groupings yields additional insight into changes in transcript expression, in particular, 3' UTR dynamics, which are likely to present phenotypical differences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于区域的定制芯片描述格式,用于重新分析公开可用的affymetrix®基因芯片®数据集
商业开发的微阵列,如来自Agilent®和Affymetrix®的微阵列,允许在全基因组范围内分析差异基因表达变化。公开的微阵列数据存储库,最著名的是ArrayExpress和Gene Expression Omnibus (GEO),已经为全世界的研究人员提供了数以百万计的微阵列样本。微阵列技术的缺点之一是在设计阶段基于现有的基因组知识和基因注释信息来静态构建探针。随着基因知识库的扩展,包括可选择的异构体形成和可选择的聚腺苷酸化信号,对微阵列表达分析的动态变化方法的需求已经变得明显。因此,我们设计了一个框架,通过更新基于基因、转录本和基于区域(UTR、外显子、CDS)注释的探针集构建来重新分析公开可用的微阵列数据集。我们对两个公开的GEO序列GSE48611和GSE72551的分析表明,使用不同的注释分组对表达变化的分析可以进一步了解转录物表达的变化,特别是3' UTR动态,这可能会呈现表型差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational Advances in Bio and Medical Sciences: 11th International Conference, ICCABS 2021, Virtual Event, December 16–18, 2021, Revised Selected Papers Computational Advances in Bio and Medical Sciences: 10th International Conference, ICCABS 2020, Virtual Event, December 10-12, 2020, Revised Selected Papers Single-Cell Gene Regulatory Network Analysis Reveals Potential Mechanisms of Action of Antimalarials Against SARS-CoV-2 Computational Study of Action Potential Generation in Urethral Smooth Muscle Cell DNA Read Feature Importance Using Machine Learning for Read Alignment Categories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1