{"title":"Averaging and Vibrational Control of Mechanical Systems","authors":"F. Bullo","doi":"10.1137/S0363012999364176","DOIUrl":null,"url":null,"abstract":"This paper investigates averaging theory and oscillatory control for a large class of mechanical systems. A link between averaging and controllability theory is presented by relating the key concepts of averaged potential and symmetric product. Both analysis and synthesis results are presented within a coordinate-free framework based on the theory of affine connections. The analysis focuses on characterizing the behavior of mechanical systems forced by high amplitude high frequency inputs. The averaged system is shown to be an affine connection system subject to an appropriate forcing term. If the input codistribution is integrable, the subclass of systems with Hamiltonian equal to \"kinetic plus potential energy\" is closed under the operation of averaging. This result precisely characterizes when the notion of averaged potential arises and how it is related to the symmetric product of control vector fields. Finally, a notion of vibrational stabilization for mechanical systems is introduced, and sufficient conditions are provided in the form of linear matrix equality and inequality tests.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":"67 1","pages":"542-562"},"PeriodicalIF":2.4000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/S0363012999364176","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 177
Abstract
This paper investigates averaging theory and oscillatory control for a large class of mechanical systems. A link between averaging and controllability theory is presented by relating the key concepts of averaged potential and symmetric product. Both analysis and synthesis results are presented within a coordinate-free framework based on the theory of affine connections. The analysis focuses on characterizing the behavior of mechanical systems forced by high amplitude high frequency inputs. The averaged system is shown to be an affine connection system subject to an appropriate forcing term. If the input codistribution is integrable, the subclass of systems with Hamiltonian equal to "kinetic plus potential energy" is closed under the operation of averaging. This result precisely characterizes when the notion of averaged potential arises and how it is related to the symmetric product of control vector fields. Finally, a notion of vibrational stabilization for mechanical systems is introduced, and sufficient conditions are provided in the form of linear matrix equality and inequality tests.
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.