Cyril Shih-Huan Hsu;Danny De Vleeschauwer;Chrysa Papagianni
{"title":"SLA Decomposition for Network Slicing: A Deep Neural Network Approach","authors":"Cyril Shih-Huan Hsu;Danny De Vleeschauwer;Chrysa Papagianni","doi":"10.1109/LNET.2023.3310359","DOIUrl":null,"url":null,"abstract":"For a network slice that spans multiple technology and/or administrative domains, these domains must ensure that the slice’s End-to-End (E2E) Service Level Agreement (SLA) is met. Thus, the E2E SLA should be decomposed to partial SLAs, assigned to each of these domains. Assuming a two-level management architecture consisting of an E2E service orchestrator and local domain controllers, we consider that the former is only aware of historical data of the local controllers’ responses to previous slice requests, and captures this knowledge in a risk model per domain. In this letter, we propose the use of Neural Network (NN) based risk models, using such historical data, to decompose the E2E SLA. Specifically, we introduce models that incorporate monotonicity, applicable even in cases involving small datasets. An empirical study on a synthetic multi-domain dataset demonstrates the efficiency of our approach.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"294-298"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10234634/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a network slice that spans multiple technology and/or administrative domains, these domains must ensure that the slice’s End-to-End (E2E) Service Level Agreement (SLA) is met. Thus, the E2E SLA should be decomposed to partial SLAs, assigned to each of these domains. Assuming a two-level management architecture consisting of an E2E service orchestrator and local domain controllers, we consider that the former is only aware of historical data of the local controllers’ responses to previous slice requests, and captures this knowledge in a risk model per domain. In this letter, we propose the use of Neural Network (NN) based risk models, using such historical data, to decompose the E2E SLA. Specifically, we introduce models that incorporate monotonicity, applicable even in cases involving small datasets. An empirical study on a synthetic multi-domain dataset demonstrates the efficiency of our approach.