Energy-efficient cloud resource management

M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes
{"title":"Energy-efficient cloud resource management","authors":"M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes","doi":"10.1109/INFCOMW.2014.6849263","DOIUrl":null,"url":null,"abstract":"We propose a resource management framework that reduces energy consumption in cloud data centers. The proposed framework predicts the number of virtual machine requests along with their amounts of CPU and memory resources, provides accurate estimations of the number of needed physical machines, and reduces energy consumption by putting to sleep unneeded physical machines. Our framework is based on real Google traces collected over a 29-day period from a Google cluster containing over 12,500 physical machines. Using this Google data, we show that our proposed framework makes substantial energy savings.","PeriodicalId":6468,"journal":{"name":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"42 1","pages":"386-391"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2014.6849263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We propose a resource management framework that reduces energy consumption in cloud data centers. The proposed framework predicts the number of virtual machine requests along with their amounts of CPU and memory resources, provides accurate estimations of the number of needed physical machines, and reduces energy consumption by putting to sleep unneeded physical machines. Our framework is based on real Google traces collected over a 29-day period from a Google cluster containing over 12,500 physical machines. Using this Google data, we show that our proposed framework makes substantial energy savings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
节能的云资源管理
我们提出了一个资源管理框架,以减少云数据中心的能源消耗。提出的框架预测虚拟机请求的数量及其CPU和内存资源的数量,提供所需物理机器数量的准确估计,并通过使不需要的物理机器休眠来减少能源消耗。我们的框架基于从包含超过12,500台物理机器的谷歌集群中收集的真实谷歌跟踪,时间长达29天。使用这个谷歌数据,我们表明我们提出的框架节省了大量的能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Node Cooperation Strategy Design for Hierarchical Federated Learning Learning Features of Brain Network for Anomaly Detection Demo abstract: EL-SEC: ELastic management of security applications on virtualized infrastructure Measuring Web Latency in Cellular Networks Reliability and maintainability analysis and its toolbased on deep learning for fault big data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1