Hibernation Execution Interval based Hybrid Boot for Baseboard Management Controllers

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577729
Ajung Kim, Gwangyong Kim, Bong-hoi Kim, Jiman Hong
{"title":"Hibernation Execution Interval based Hybrid Boot for Baseboard Management Controllers","authors":"Ajung Kim, Gwangyong Kim, Bong-hoi Kim, Jiman Hong","doi":"10.1145/3555776.3577729","DOIUrl":null,"url":null,"abstract":"The Baseboard Management Controller1 (BMC) reduces the operating cost of the server because it enables remote monitoring of the server. In order to reduce the boot time of the BMC, the hibernation technique has been applied for the fast boot of the BMC. However, it is difficult to apply the existing hibernation technique to the BMC as it is because the boot time may be longer than the cold boot since memory usage is not constant for each BMC. In this paper, we propose a hybrid boot technique that selects the faster boot between cold boot and hibernation-based boot based on the proper hibernation execution periodic interval. The proposed technique can perform boot at a point where the boot time is expected to be the minimum by checking memory usage. The experimental results show that the proposed hybrid boot technique can reduce the total boot time significantly compared to cold boot.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The Baseboard Management Controller1 (BMC) reduces the operating cost of the server because it enables remote monitoring of the server. In order to reduce the boot time of the BMC, the hibernation technique has been applied for the fast boot of the BMC. However, it is difficult to apply the existing hibernation technique to the BMC as it is because the boot time may be longer than the cold boot since memory usage is not constant for each BMC. In this paper, we propose a hybrid boot technique that selects the faster boot between cold boot and hibernation-based boot based on the proper hibernation execution periodic interval. The proposed technique can perform boot at a point where the boot time is expected to be the minimum by checking memory usage. The experimental results show that the proposed hybrid boot technique can reduce the total boot time significantly compared to cold boot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于休眠执行间隔的基板管理控制器混合启动
Baseboard Management Controller1 (BMC)降低了服务器的运营成本,因为它支持对服务器进行远程监控。为了缩短BMC的启动时间,采用休眠技术实现BMC的快速启动。但是,很难将现有的休眠技术应用于BMC,因为每个BMC的内存使用不是恒定的,因此启动时间可能比冷启动时间长。在本文中,我们提出了一种混合启动技术,基于适当的休眠执行周期间隔,在冷启动和基于休眠的启动之间选择更快的启动。所建议的技术可以通过检查内存使用情况,在预期引导时间最短的点执行引导。实验结果表明,与冷启动相比,混合启动技术能显著缩短系统总启动时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1