{"title":"Polymer-Derived Nitrogen-Doped Carbon Nanosheet Cluster and Its Application for Water Purification","authors":"Xiaoyan Yu, Ting Zheng, S. Pilla","doi":"10.3390/MACROMOL1020007","DOIUrl":null,"url":null,"abstract":"A series of nitrogen-doped carbons (NCs) were prepared by the pyrolysis (300–900 °C) of crystalline polyazomethine (PAM) synthesized via a facile condensation reaction in methanol solvent. The controlled solvent evaporation resulted in PAM crystals in the form of nanosheet clusters with a sheet thickness of ~50 nm. Such architecture was maintained after pyrolysis, obtaining porous CNs of high specific surface areas of up to 700 m2/g. The resulting NCs were used as absorbents to remove aromatic Rhodamine B from water. The NC that pyrolyzed at 750 °C exhibited the highest adsorption capacity (0.025 mg/mg), which is attributed to its high surface area and surface condition.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"57 1","pages":"84-93"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MACROMOL1020007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A series of nitrogen-doped carbons (NCs) were prepared by the pyrolysis (300–900 °C) of crystalline polyazomethine (PAM) synthesized via a facile condensation reaction in methanol solvent. The controlled solvent evaporation resulted in PAM crystals in the form of nanosheet clusters with a sheet thickness of ~50 nm. Such architecture was maintained after pyrolysis, obtaining porous CNs of high specific surface areas of up to 700 m2/g. The resulting NCs were used as absorbents to remove aromatic Rhodamine B from water. The NC that pyrolyzed at 750 °C exhibited the highest adsorption capacity (0.025 mg/mg), which is attributed to its high surface area and surface condition.