Inflammatory Cytokines Are Involved in Focal Demyelination in Leprosy Neuritis

P. Andrade, M. Jardim, A. C. D. da Silva, Paula Saraiva Manhães, S. Antunes, R. Vital, Rhana Berto da Silva Prata, R. B. Petito, R. Pinheiro, E. Sarno
{"title":"Inflammatory Cytokines Are Involved in Focal Demyelination in Leprosy Neuritis","authors":"P. Andrade, M. Jardim, A. C. D. da Silva, Paula Saraiva Manhães, S. Antunes, R. Vital, Rhana Berto da Silva Prata, R. B. Petito, R. Pinheiro, E. Sarno","doi":"10.1093/jnen/nlv027","DOIUrl":null,"url":null,"abstract":"Mycobacterium leprae (ML) infection causes nerve damage that often leads to permanent loss of cutaneous sensitivity and limb deformities, but understanding of the pathogenesis of leprous neuropathy that would lead to more effective treatments is incomplete. We studied reactional leprosy patients with (n = 9) and without (n = 8) acute neuritis. Nerve conduction studies over the course of the reactional episode showed the findings of demyelination in all patients with neuritis. Evaluation of patient sera revealed no correlation of the presence of antibodies against gangliosides and the clinical demyelination. In nerve biopsies of 3 patients with neuritis, we identified tumor necrosis factor (TNF), TNF receptors, and TNF-converting enzyme in Schwann cells (SCs) using immunofluorescence. To elucidate immunopathogenetic mechanisms, we performed experiments using a human SC line. ML induced transmembrane TNF and TNF receptor 1 expression in the SCs; TNF also induced interleukin (IL)-6 and IL-8 production by the SCs; and ML induced IL-23 secretion, indicating involvement of this previously unrecognized factor in leprosy nerve damage. These data suggest that ML may contribute to TNF-mediated inflammation and focal demyelination by rendering SCs more sensitive to TNF within the nerves of patients with leprous neuropathy.","PeriodicalId":16434,"journal":{"name":"Journal of Neuropathology & Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology & Experimental Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jnen/nlv027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Mycobacterium leprae (ML) infection causes nerve damage that often leads to permanent loss of cutaneous sensitivity and limb deformities, but understanding of the pathogenesis of leprous neuropathy that would lead to more effective treatments is incomplete. We studied reactional leprosy patients with (n = 9) and without (n = 8) acute neuritis. Nerve conduction studies over the course of the reactional episode showed the findings of demyelination in all patients with neuritis. Evaluation of patient sera revealed no correlation of the presence of antibodies against gangliosides and the clinical demyelination. In nerve biopsies of 3 patients with neuritis, we identified tumor necrosis factor (TNF), TNF receptors, and TNF-converting enzyme in Schwann cells (SCs) using immunofluorescence. To elucidate immunopathogenetic mechanisms, we performed experiments using a human SC line. ML induced transmembrane TNF and TNF receptor 1 expression in the SCs; TNF also induced interleukin (IL)-6 and IL-8 production by the SCs; and ML induced IL-23 secretion, indicating involvement of this previously unrecognized factor in leprosy nerve damage. These data suggest that ML may contribute to TNF-mediated inflammation and focal demyelination by rendering SCs more sensitive to TNF within the nerves of patients with leprous neuropathy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
炎症细胞因子参与麻风病神经炎局灶性脱髓鞘
麻风分枝杆菌(ML)感染引起神经损伤,通常导致皮肤敏感性永久性丧失和肢体畸形,但对麻风神经病变发病机制的了解尚不完整,因此无法进行更有效的治疗。我们研究了有(n = 9)和没有(n = 8)急性神经炎的反应性麻风病患者。在反应性发作过程中的神经传导研究显示所有神经炎患者脱髓鞘的发现。对患者血清的评估显示抗神经节苷类抗体的存在与临床脱髓鞘无相关性。在3例神经炎患者的神经活检中,我们使用免疫荧光技术鉴定了雪旺细胞(SCs)中的肿瘤坏死因子(TNF)、TNF受体和TNF转换酶。为了阐明免疫发病机制,我们使用人类SC细胞系进行了实验。ML诱导SCs跨膜TNF和TNF受体1表达;TNF还诱导SCs产生白细胞介素(IL)-6和IL-8;ML诱导IL-23分泌,表明这一先前未被认识的因素参与麻风病神经损伤。这些数据表明,ML可能通过使麻风神经病变患者神经内的SCs对TNF更敏感,从而促进TNF介导的炎症和局灶性脱髓鞘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stirling Carpenter, MD February 27, 1929–February 19, 2021 William G. Ellis, MD June 12, 1932–January 16, 2021 Autobiography Series: A Life of Anecdotes Meritorious Contributions to Neuropathology In Memoriam: Carol Petito, MD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1