Ultrasound Rendering of Tactile Interaction with Fluids

H. Barreiro, S. Sinclair, M. Otaduy
{"title":"Ultrasound Rendering of Tactile Interaction with Fluids","authors":"H. Barreiro, S. Sinclair, M. Otaduy","doi":"10.1109/WHC.2019.8816137","DOIUrl":null,"url":null,"abstract":"When we interact with fluid media, e.g., with our hands, we experience a spatially and temporally varying pressure field on our skin, which depends on the density and viscosity of the fluid, as well as the relative motion between our hands and the surrounding flow. Ultrasound phased arrays stimulate skin in mid air by controlling pressure waves at particular spatial locations. In this work, we explore the connection between the pressure-based stimulation of ultrasound haptics and the actual pressure field experienced when interacting with fluid media, to devise a novel algorithm for ultrasound-based rendering of tactile interaction with fluids. Our algorithm extracts the target pressure field on a virtual hand from an interactive fluid simulation, and formulates the computation of the rendered pressure as an optimization problem. We have designed an efficient solver for this optimization problem, and we show results of interactive experiments with several fluid simulations.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"8 1","pages":"521-526"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

When we interact with fluid media, e.g., with our hands, we experience a spatially and temporally varying pressure field on our skin, which depends on the density and viscosity of the fluid, as well as the relative motion between our hands and the surrounding flow. Ultrasound phased arrays stimulate skin in mid air by controlling pressure waves at particular spatial locations. In this work, we explore the connection between the pressure-based stimulation of ultrasound haptics and the actual pressure field experienced when interacting with fluid media, to devise a novel algorithm for ultrasound-based rendering of tactile interaction with fluids. Our algorithm extracts the target pressure field on a virtual hand from an interactive fluid simulation, and formulates the computation of the rendered pressure as an optimization problem. We have designed an efficient solver for this optimization problem, and we show results of interactive experiments with several fluid simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
触觉与流体相互作用的超声渲染
当我们与流体介质相互作用时,例如用我们的手,我们会在皮肤上经历一个时空变化的压力场,这取决于流体的密度和粘度,以及我们的手与周围流体之间的相对运动。超声波相控阵通过控制特定空间位置的压力波来刺激空气中的皮肤。在这项工作中,我们探索了超声触觉的压力刺激与流体介质相互作用时所经历的实际压力场之间的联系,设计了一种基于超声的流体触觉相互作用渲染算法。该算法从交互式流体仿真中提取虚拟手上的目标压力场,并将所呈现的压力计算公式化为优化问题。我们设计了一个高效的求解器,并给出了几个流体模拟的交互实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contact with Sliding over a Rotating Ridged Surface: the Turntable Illusion A preliminary apparatus and teaching structure for passive tactile training of stenography Evaluating the Use of Variable Height in Tactile Graphics Ball-type Haptic Interface to Present Impact Points with Vibrations for Televised Ball-based Sporting Event Sparse Actuator Array Combined with Inverse Filter for Multitouch Vibrotactile Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1