D. G. Chereshkov, Ternovykh Mikhail Ternovykh, G. Tikhomirov, Aleksandr Aleksandrovich Ryzhkov
{"title":"Nuclear Data Uncertainty on Generation IV Fast Reactors Criticality Calculations Analysis Comparison","authors":"D. G. Chereshkov, Ternovykh Mikhail Ternovykh, G. Tikhomirov, Aleksandr Aleksandrovich Ryzhkov","doi":"10.26583/npe.2023.1.14","DOIUrl":null,"url":null,"abstract":"The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead-and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2023.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead-and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.
期刊介绍:
The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.