Consistent-estimated eigenvalues based cooperative spectrum sensing for dense cognitive Small Cell Network

Meng Zhao, Caili Guo, Chunyan Feng, Shuo Chen
{"title":"Consistent-estimated eigenvalues based cooperative spectrum sensing for dense cognitive Small Cell Network","authors":"Meng Zhao, Caili Guo, Chunyan Feng, Shuo Chen","doi":"10.1109/ICCW.2017.7962709","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spectrum sensing problem of detecting a primary signal of a macro cell in a cognitive radio network by employing multiple dense small cell base stations. In consideration of the number of cooperative small cells (sample dimension) is comparable to the number of sample (sample size) due to the dense deployment of small cells, sample covariance matrix is no more a good estimator of statistical covariance matrix. A consistent-estimated eigenvalues based cooperative spectrum sensing (CEE-CSS) algorithm is proposed by utilizing consistent estimators of eigenvalues which are proven to be consistent when the sample dimension goes to infinity at the same rate as sample size. Effect of the eigenvalue splitting condition on sensing performance of the CEE-CSS is analyzed through simulations. Further simulation results present that the proposed CEE-CSS enables better sensing performance than a maximum-minimum eigenvalue detection based on oracle approximating shrinkage estimator (OAS-MME).","PeriodicalId":6656,"journal":{"name":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"29 1","pages":"510-515"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2017.7962709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we consider the spectrum sensing problem of detecting a primary signal of a macro cell in a cognitive radio network by employing multiple dense small cell base stations. In consideration of the number of cooperative small cells (sample dimension) is comparable to the number of sample (sample size) due to the dense deployment of small cells, sample covariance matrix is no more a good estimator of statistical covariance matrix. A consistent-estimated eigenvalues based cooperative spectrum sensing (CEE-CSS) algorithm is proposed by utilizing consistent estimators of eigenvalues which are proven to be consistent when the sample dimension goes to infinity at the same rate as sample size. Effect of the eigenvalue splitting condition on sensing performance of the CEE-CSS is analyzed through simulations. Further simulation results present that the proposed CEE-CSS enables better sensing performance than a maximum-minimum eigenvalue detection based on oracle approximating shrinkage estimator (OAS-MME).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一致性估计特征值的密集认知小蜂窝网络协同频谱感知
在本文中,我们考虑了在认知无线网络中使用多个密集的小蜂窝基站来检测一个宏蜂窝的一次信号的频谱感知问题。由于小单元的密集部署,考虑到合作小单元的数量(样本维数)与样本数量(样本大小)相当,样本协方差矩阵不再是统计协方差矩阵的良好估计量。提出了一种基于一致性估计特征值的协同频谱感知(CEE-CSS)算法,该算法利用特征值的一致性估计,证明了当样本维数以与样本大小相同的速率趋于无穷大时,特征值的一致性估计是一致的。通过仿真分析了特征值分裂条件对CEE-CSS传感性能的影响。进一步的仿真结果表明,与基于oracle逼近收缩估计器(OAS-MME)的最大-最小特征值检测相比,所提出的CEE-CSS具有更好的传感性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welcome Message from the General and Executive Chairs Welcome Message from the Technical Program Committee Chair Performance Analysis for Full-Duplex UAV Legitimate Surveillance System Interference aware inter-cell rank coordination for 5G wide area networks Compensation of ADC-induced distortion in broadband full-duplex transceivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1