Mechanical Response of Reactive Extruded Biocomposites Based on Recycled Poly(lactic Acid) (R-PLA)/Recycled Polycarbonate (R-PC) and Cellulosic Fibers with Different Aspect Ratios

Macromol Pub Date : 2022-10-26 DOI:10.3390/macromol2040032
V. Gigante, Laura Aliotta, M. Coltelli, A. Lazzeri
{"title":"Mechanical Response of Reactive Extruded Biocomposites Based on Recycled Poly(lactic Acid) (R-PLA)/Recycled Polycarbonate (R-PC) and Cellulosic Fibers with Different Aspect Ratios","authors":"V. Gigante, Laura Aliotta, M. Coltelli, A. Lazzeri","doi":"10.3390/macromol2040032","DOIUrl":null,"url":null,"abstract":"Coupling recycling processes with increased use of bio-derived and environmentally friendly materials, with the aim of approaching (or overcoming) the mechanical properties of petroleum-derived plastics, is a path that research is pursuing in small but important steps. It is in this stream that this paper wants to fit in developing recycled poly(lactic acid) (R-PLA)/recycled polycarbonate (R-PC) blends obtained from thermoforming processing scraps and reinforcing them with cellulosic-derived fibers, having three different aspect ratios. The aim is to understand the mechanical properties of “second life” materials, their adherence to some micromechanical predictive models and the reinforcement capacity of these natural fibers in relation to their dimensions. Moreover, a compatibilizing system, based on Triacetin (TA) and Tetrabutylammonium Tetraphenylborate (TBATPB), has been added during the extrusion to investigate if a reactive process among R-PLA/R-PC and cellulosic fibers can be achieved.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol2040032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling recycling processes with increased use of bio-derived and environmentally friendly materials, with the aim of approaching (or overcoming) the mechanical properties of petroleum-derived plastics, is a path that research is pursuing in small but important steps. It is in this stream that this paper wants to fit in developing recycled poly(lactic acid) (R-PLA)/recycled polycarbonate (R-PC) blends obtained from thermoforming processing scraps and reinforcing them with cellulosic-derived fibers, having three different aspect ratios. The aim is to understand the mechanical properties of “second life” materials, their adherence to some micromechanical predictive models and the reinforcement capacity of these natural fibers in relation to their dimensions. Moreover, a compatibilizing system, based on Triacetin (TA) and Tetrabutylammonium Tetraphenylborate (TBATPB), has been added during the extrusion to investigate if a reactive process among R-PLA/R-PC and cellulosic fibers can be achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于再生聚乳酸(R-PLA)/再生聚碳酸酯(R-PC)和不同长径比纤维素纤维的反应性挤出生物复合材料的力学响应
将回收过程与生物衍生和环境友好材料的增加使用结合起来,目的是接近(或克服)石油衍生塑料的机械性能,这是一条研究正在追求的小而重要的步骤。正是在这一流程中,本文希望适合于开发从热成型加工废料中获得的再生聚乳酸(R-PLA)/再生聚碳酸酯(R-PC)共混物,并用具有三种不同长宽比的纤维素纤维增强它们。目的是了解“二次寿命”材料的机械性能,它们对一些微力学预测模型的粘附性,以及这些天然纤维与其尺寸相关的增强能力。此外,在挤压过程中加入了一种基于三乙酸酯(TA)和四苯基硼酸四丁基铵(TBATPB)的增容体系,以研究R-PLA/R-PC与纤维素纤维之间是否能发生反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Different Extraction Conditions on the Physicochemical Properties of Novel High Methoxyl Pectin-like Polysaccharides from Green Bell Pepper (GBP) Recyclability Perspectives of the Most Diffused Biobased and Biodegradable Plastic Materials Autoclaving Achieves pH-Neutralization, Hydrogelation, and Sterilization of Chitosan Hydrogels in One Step Effect of Tacticity on London Dispersive Surface Energy, Polar Free Energy and Lewis Acid-Base Surface Energies of Poly Methyl Methacrylate by Inverse Gas Chromatography Synthesis and Characterisation of 4D-Printed NVCL-co-DEGDA Resin Using Stereolithography 3D Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1