Taxonomy-focused Natural Product Databases for Carbon-13 NMR-based Dereplication

Analytica Pub Date : 2021-05-28 DOI:10.3390/ANALYTICA2030006
J. Nuzillard
{"title":"Taxonomy-focused Natural Product Databases for Carbon-13 NMR-based Dereplication","authors":"J. Nuzillard","doi":"10.3390/ANALYTICA2030006","DOIUrl":null,"url":null,"abstract":"The recent revival of the study of organic natural products as renewable sources of medicinal drugs, cosmetics, dyes, and materials motivated the creation of general-purpose structural databases. Dereplication, the efficient identification of already reported compounds, relies on the grouping of structural, taxonomic and spectroscopic databases that focus on a particular taxon (species, genus, family, order…). A set of freely available python scripts, CNMRPredict, is proposed for the quick supplementation of taxon-oriented search results from the LOTUS database (lotus.naturalproducts.net) with predicted carbon-13 NMR data from the ACD/Labs (acdlabs.com) CNMR predictor and DB software to provide easily searchable databases. The database construction process is illustrated using Brassica rapa as taxon example.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ANALYTICA2030006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The recent revival of the study of organic natural products as renewable sources of medicinal drugs, cosmetics, dyes, and materials motivated the creation of general-purpose structural databases. Dereplication, the efficient identification of already reported compounds, relies on the grouping of structural, taxonomic and spectroscopic databases that focus on a particular taxon (species, genus, family, order…). A set of freely available python scripts, CNMRPredict, is proposed for the quick supplementation of taxon-oriented search results from the LOTUS database (lotus.naturalproducts.net) with predicted carbon-13 NMR data from the ACD/Labs (acdlabs.com) CNMR predictor and DB software to provide easily searchable databases. The database construction process is illustrated using Brassica rapa as taxon example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以分类为重点的基于碳-13核磁共振的自然产物数据库
最近对有机天然产品作为药物、化妆品、染料和材料的可再生资源的研究的复兴推动了通用结构数据库的创建。去重复是对已报道的化合物的有效鉴定,它依赖于对特定分类单元(种、属、科、目……)的结构、分类学和光谱数据库进行分组。提出了一套免费的python脚本CNMRPredict,用于快速补充来自LOTUS数据库(lotus.naturalproducts.net)的面向分类单元的搜索结果和来自ACD/Labs (acdlabs.com) CNMR predictor和DB软件的预测碳-13 NMR数据,以提供易于搜索的数据库。以油菜(Brassica rapa)为例说明了数据库的构建过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Enteromorpha compressa Macroalgal Biomass Nanoparticles as Eco-Friendly Biosorbents for the Efficient Removal of Harmful Metals from Aqueous Solutions Assessment of Lycopene Levels in Dried Watermelon Pomace: A Sustainable Approach to Waste Reduction and Nutrient Valorization Development of a Paper-Based Sol–Gel Vapochromic Sensor for the Detection of Vapor Cross-Contamination within a Closed Container Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.) Detection of Gene Doping Using Dried Blood Spots from a Mouse Model with rAAV9 Vector-Mediated Human Erythropoietin Expression as a Pilot Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1