Depth Map Super-Resolution via Cascaded Transformers Guidance

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers in signal processing Pub Date : 2022-03-24 DOI:10.3389/frsip.2022.847890
I. Ariav, I. Cohen
{"title":"Depth Map Super-Resolution via Cascaded Transformers Guidance","authors":"I. Ariav, I. Cohen","doi":"10.3389/frsip.2022.847890","DOIUrl":null,"url":null,"abstract":"Depth information captured by affordable depth sensors is characterized by low spatial resolution, which limits potential applications. Several methods have recently been proposed for guided super-resolution of depth maps using convolutional neural networks to overcome this limitation. In a guided super-resolution scheme, high-resolution depth maps are inferred from low-resolution ones with the additional guidance of a corresponding high-resolution intensity image. However, these methods are still prone to texture copying issues due to improper guidance by the intensity image. We propose a multi-scale residual deep network for depth map super-resolution. A cascaded transformer module incorporates high-resolution structural information from the intensity image into the depth upsampling process. The proposed cascaded transformer module achieves linear complexity in image resolution, making it applicable to high-resolution images. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art techniques for guided depth super-resolution.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2022.847890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Depth information captured by affordable depth sensors is characterized by low spatial resolution, which limits potential applications. Several methods have recently been proposed for guided super-resolution of depth maps using convolutional neural networks to overcome this limitation. In a guided super-resolution scheme, high-resolution depth maps are inferred from low-resolution ones with the additional guidance of a corresponding high-resolution intensity image. However, these methods are still prone to texture copying issues due to improper guidance by the intensity image. We propose a multi-scale residual deep network for depth map super-resolution. A cascaded transformer module incorporates high-resolution structural information from the intensity image into the depth upsampling process. The proposed cascaded transformer module achieves linear complexity in image resolution, making it applicable to high-resolution images. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art techniques for guided depth super-resolution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度图超分辨率通过级联变压器指导
经济实惠的深度传感器捕获的深度信息具有空间分辨率低的特点,这限制了潜在的应用。为了克服这一限制,最近提出了几种使用卷积神经网络进行深度图引导超分辨率的方法。在引导的超分辨率方案中,高分辨率深度图是在低分辨率深度图的基础上,在相应的高分辨率强度图像的引导下推断出来的。然而,这些方法由于灰度图像引导不当,仍然容易出现纹理复制问题。提出了一种用于深度图超分辨率的多尺度残差深度网络。级联变压器模块将来自强度图像的高分辨率结构信息集成到深度上采样过程中。所提出的级联变压器模块在图像分辨率上实现了线性复杂度,使其适用于高分辨率图像。大量的实验表明,该方法优于当前最先进的制导深度超分辨率技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mini-review of signal processing techniques for RIS-assisted near field THz communication Editorial: Signal processing in computational video and video streaming Editorial: Editor’s challenge—image processing Improved circuitry and post-processing for interleaved fast-scan cyclic voltammetry and electrophysiology measurements Bounds for Haralick features in synthetic images with sinusoidal gradients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1