Wind power variability during the passage of cold fronts across South Africa

IF 0.6 4区 工程技术 Q4 ENERGY & FUELS Journal of Energy in Southern Africa Pub Date : 2019-09-18 DOI:10.17159/2413-3051/2019/v30i3a6356
A. Dalton, B. Bekker, A. Kruger
{"title":"Wind power variability during the passage of cold fronts across South Africa","authors":"A. Dalton, B. Bekker, A. Kruger","doi":"10.17159/2413-3051/2019/v30i3a6356","DOIUrl":null,"url":null,"abstract":"Wind is a naturally variable resource that fluctuates across timescales and, by the same token, the electricity generated by wind also fluctuates across timescales. At longer timescales, i.e., hours to days, synoptic-scale weather systems, notably cold fronts during South African winter months, are important instigators of strong wind conditions and variability in the wind resource. The variability of wind power production from aggregates of geographically disperse turbines for the passage of individual cold fronts over South Africa was simulated in this study. When considering wind power variability caused by synoptic-scale weather patterns, specifically cold fronts, the timescale at which analysis is conducted was found to be of great importance, as relatively small mean absolute power ramps at a ten-minute temporal resolution, order of 2-4% of simulated capacity, can result in large variations of total wind power production (at the order of 32–93% of simulated capacity) over a period of three to four days as a cold front passes. It was found that when the aggregate consists of a larger and more geographically dispersed set of turbines, as opposed to a smaller set of turbines specifically located within cold-front dominated high wind areas, variability and the mean absolute ramp rates decrease (or gets ‘smoothed’) across the timescales considered. It was finally shown that the majority of large simulated wind power ramp events observed during the winter months, especially at longer timescales, are caused by the passage of cold fronts. ","PeriodicalId":15666,"journal":{"name":"Journal of Energy in Southern Africa","volume":"62 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy in Southern Africa","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2413-3051/2019/v30i3a6356","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6

Abstract

Wind is a naturally variable resource that fluctuates across timescales and, by the same token, the electricity generated by wind also fluctuates across timescales. At longer timescales, i.e., hours to days, synoptic-scale weather systems, notably cold fronts during South African winter months, are important instigators of strong wind conditions and variability in the wind resource. The variability of wind power production from aggregates of geographically disperse turbines for the passage of individual cold fronts over South Africa was simulated in this study. When considering wind power variability caused by synoptic-scale weather patterns, specifically cold fronts, the timescale at which analysis is conducted was found to be of great importance, as relatively small mean absolute power ramps at a ten-minute temporal resolution, order of 2-4% of simulated capacity, can result in large variations of total wind power production (at the order of 32–93% of simulated capacity) over a period of three to four days as a cold front passes. It was found that when the aggregate consists of a larger and more geographically dispersed set of turbines, as opposed to a smaller set of turbines specifically located within cold-front dominated high wind areas, variability and the mean absolute ramp rates decrease (or gets ‘smoothed’) across the timescales considered. It was finally shown that the majority of large simulated wind power ramp events observed during the winter months, especially at longer timescales, are caused by the passage of cold fronts. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷锋经过南非时的风力变异性
风是一种自然变化的资源,在时间尺度上波动,同样,风产生的电力也在时间尺度上波动。在较长的时间尺度上,即数小时到数天,天气尺度的天气系统,特别是南非冬季月份的冷锋,是强风条件和风资源变化的重要诱因。本研究模拟了南非上空个别冷锋经过时,地理上分散的涡轮机聚集产生的风力发电量的变异性。当考虑天气尺度天气模式(特别是冷锋)引起的风力变率时,进行分析的时间尺度非常重要,因为在10分钟时间分辨率下相对较小的平均绝对功率斜率(约为模拟容量的2-4%)可能导致总风力发电量在冷锋经过的3至4天内发生巨大变化(约为模拟容量的32-93%)。研究发现,当总体由更大、地理上更分散的一组涡轮机组成时,而不是专门位于冷锋主导的高风区的一组较小的涡轮机,变异性和平均绝对斜坡率在考虑的时间尺度上减少(或“平滑”)。最后表明,在冬季观测到的大多数大型模拟风力斜坡事件,特别是在较长的时间尺度上,是由冷锋通过引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
16
审稿时长
6 months
期刊介绍: The journal has a regional focus on southern Africa. Manuscripts that are accepted for consideration to publish in the journal must address energy issues in southern Africa or have a clear component relevant to southern Africa, including research that was set-up or designed in the region. The southern African region is considered to be constituted by the following fifteen (15) countries: Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Madagascar, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe. Within this broad field of energy research, topics of particular interest include energy efficiency, modelling, renewable energy, poverty, sustainable development, climate change mitigation, energy security, energy policy, energy governance, markets, technology and innovation.
期刊最新文献
Modelling NO2 emissions from Eskom’s coal fired power stations using Generalised Linear Models Trend analysis and inter-annual variability in wind speed in South Africa Commercialization of green hydrogen production from kraal manure in the Eastern Cape, South Africa: A review Investigation of Wind Data Resolution for Small Wind Turbine Performance Study Socio-economic analysis of solar photovoltaic-based mini-grids in rural communities: A Ugandan case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1