Nuclear norm regularized estimation of panel regression models

M. Weidner, H. Moon
{"title":"Nuclear norm regularized estimation of panel regression models","authors":"M. Weidner, H. Moon","doi":"10.1920/WP.CEM.2019.1419","DOIUrl":null,"url":null,"abstract":"In this paper we investigate panel regression models with interactive fixed effects. We propose two new estimation methods that are based on minimizing convex objective functions. The fi rst method minimizes the sum of squared residuals with a nuclear (trace) norm regularization. The second method minimizes the nuclear norm of the residuals. We establish the consistency of the two resulting estimators. Those estimators have a very important computational advantage compared to the existing least squares (LS) estimator, in that they are de fined as minimizers of a convex objective function. In addition, the nuclear norm penalization helps to resolve a potential identifi cation problem for interactive fixed effect models, in particular when the regressors are low-rank and the number of the factors is unknown. We also show how to construct estimators that are asymptotically equivalent to the least squares (LS) estimator in Bai (2009) and Moon and Weidner (2017) by using our nuclear norm regularized or minimized estimators as initial values for a nite number of LS minimizing iteration steps. This iteration avoids any non-convex minimization, while the original LS estimation problem is generally non-convex, and can have multiple local minima.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2019.1419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

In this paper we investigate panel regression models with interactive fixed effects. We propose two new estimation methods that are based on minimizing convex objective functions. The fi rst method minimizes the sum of squared residuals with a nuclear (trace) norm regularization. The second method minimizes the nuclear norm of the residuals. We establish the consistency of the two resulting estimators. Those estimators have a very important computational advantage compared to the existing least squares (LS) estimator, in that they are de fined as minimizers of a convex objective function. In addition, the nuclear norm penalization helps to resolve a potential identifi cation problem for interactive fixed effect models, in particular when the regressors are low-rank and the number of the factors is unknown. We also show how to construct estimators that are asymptotically equivalent to the least squares (LS) estimator in Bai (2009) and Moon and Weidner (2017) by using our nuclear norm regularized or minimized estimators as initial values for a nite number of LS minimizing iteration steps. This iteration avoids any non-convex minimization, while the original LS estimation problem is generally non-convex, and can have multiple local minima.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面板回归模型的核范数正则估计
本文研究了具有交互固定效应的面板回归模型。提出了两种基于凸目标函数最小化的估计方法。第一种方法通过核(迹)范数正则化最小化残差平方和。第二种方法最小化残差的核范数。我们建立了两个估计量的相合性。与现有的最小二乘(LS)估计器相比,这些估计器具有非常重要的计算优势,因为它们被定义为凸目标函数的最小化。此外,核规范惩罚有助于解决交互式固定效应模型的潜在识别问题,特别是当回归量是低秩的和因素数量未知时。我们还展示了如何构建渐近等效于Bai(2009)和Moon and Weidner(2017)中的最小二乘(LS)估计量的估计量,方法是使用我们的核范数正则化或最小化估计量作为最小二乘迭代步骤的初始值。这种迭代避免了任何非凸最小化,而原始LS估计问题通常是非凸的,并且可以有多个局部最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Macroeconomic Variations after Covid-19 Estimation and Inference by Stochastic Optimization: Three Examples Testable implications of multiple equilibria in discrete games with correlated types Gaussian transforms modeling and the estimation of distributional regression functions Simple misspecification adaptive inference for interval identified parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1