Impact of Orthogonal Signal Correction (OSC) on the Predictive Ability of CoMFA Models for the Ciliate Toxicity of Nitrobenzenes Dedicated to Professor Werner Klein, Schmallenberg (Germany), on the oaccastion of his 65th birthday

M. Bohác, Björn Loeprecht, J. Damborský, G. Schüürmann
{"title":"Impact of Orthogonal Signal Correction (OSC) on the Predictive Ability of CoMFA Models for the Ciliate Toxicity of Nitrobenzenes Dedicated to Professor Werner Klein, Schmallenberg (Germany), on the oaccastion of his 65th birthday","authors":"M. Bohác, Björn Loeprecht, J. Damborský, G. Schüürmann","doi":"10.1002/1521-3838(200205)21:1<3::aid-qsar3>3.0.co;2-d","DOIUrl":null,"url":null,"abstract":"The impact of orthogonal signal correction (OSC) on the prediction power of CoMFA models was studied using a data set of 47 nitrobenzenes with toxicities (log 1/IC50) towards the aquatic ciliates Tetrahymena pyriformis. Comparative analyses of different data pre-treatments shows that block unscaled weighting (BUW) results in significantly better PLS models than no scaling, centering or autoscaling for OSC. One OSC component is optimal for the signal correction and reduces the X variance by about 40%. While OSC yields improved calibration and cross-validation statistics, standard CoMFA is superior with respect to the external prediction power as evaluated by models built from complementary subsets. Moreover, external prediction reveals some cases of severe OSC overfitting, which needs attention in future investigations.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200205)21:1<3::aid-qsar3>3.0.co;2-d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The impact of orthogonal signal correction (OSC) on the prediction power of CoMFA models was studied using a data set of 47 nitrobenzenes with toxicities (log 1/IC50) towards the aquatic ciliates Tetrahymena pyriformis. Comparative analyses of different data pre-treatments shows that block unscaled weighting (BUW) results in significantly better PLS models than no scaling, centering or autoscaling for OSC. One OSC component is optimal for the signal correction and reduces the X variance by about 40%. While OSC yields improved calibration and cross-validation statistics, standard CoMFA is superior with respect to the external prediction power as evaluated by models built from complementary subsets. Moreover, external prediction reveals some cases of severe OSC overfitting, which needs attention in future investigations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正交信号校正(OSC)对CoMFA模型对硝基苯的虫毒性预测能力的影响——献给Schmallenberg(德国)Werner Klein教授65岁生日之际
利用47种硝基苯对梨形四膜虫(Tetrahymena pyriformis)毒性(log 1/IC50)的数据集,研究正交信号校正(OSC)对CoMFA模型预测能力的影响。对不同数据预处理方法的对比分析表明,块未缩放加权(BUW)比无缩放、定心或自动缩放的PLS模型效果更好。一个OSC分量对于信号校正是最优的,可以减少约40%的X方差。虽然OSC产生了改进的校准和交叉验证统计,但标准CoMFA在外部预测能力方面优于由互补子集构建的模型。此外,外部预测还揭示了一些严重的盐含量过拟合情况,这在今后的研究中值得注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of publications related to QASR Mechanistic Study on N‐Demethylation Catalyzed with P450 by Quantitative Structure Activity Relationship using Electronic Properties of 4‐Substituted N,N‐Dimethylaniline 3D QSAR of Serotonin Transporter Ligands: CoMFA and CoMSIA Studies Scaffold Searching: Automated Identification of Similar Ring Systems for the Design of Combinatorial Libraries Theoretical Prediction of the Phenoxyl Radical Formation Capacity and Cyclooxygenase Inhibition Relationships by Phenolic Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1