An Online Approach to Determine Correlation between Data Streams

Devesh Kumar Lal, U. Suman
{"title":"An Online Approach to Determine Correlation between Data Streams","authors":"Devesh Kumar Lal, U. Suman","doi":"10.1145/3447545.3451900","DOIUrl":null,"url":null,"abstract":"Real time stream processing demands processed outcomes in minimal latency. Massive streams are generated in real time where linear relationship is determined using correlation. Existing approaches are used for correlating static data sets such as, Kandell, Pearson, Spearman etc. These approaches are insufficient to solve noise free online correlation. In this paper, we propose an online ordinal correlation approach having functionalities such as single pass, avoiding recalculation from scratch, removing outliers, and low memory requirements. In this approach, Compare Reduce Aggregate (CRA) algorithm is used for determining association between two feature vectors in real time using single scanning technique. Time and space complexities in CRA algorithm are measured as O(n) and O(1), respectively. This algorithm is used for reducing noise or error in a stream and used as a replacement of rank based correlation. It is recommended to have distinct elements and less variability in the streams for gaining maximum performance of this algorithm.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447545.3451900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Real time stream processing demands processed outcomes in minimal latency. Massive streams are generated in real time where linear relationship is determined using correlation. Existing approaches are used for correlating static data sets such as, Kandell, Pearson, Spearman etc. These approaches are insufficient to solve noise free online correlation. In this paper, we propose an online ordinal correlation approach having functionalities such as single pass, avoiding recalculation from scratch, removing outliers, and low memory requirements. In this approach, Compare Reduce Aggregate (CRA) algorithm is used for determining association between two feature vectors in real time using single scanning technique. Time and space complexities in CRA algorithm are measured as O(n) and O(1), respectively. This algorithm is used for reducing noise or error in a stream and used as a replacement of rank based correlation. It is recommended to have distinct elements and less variability in the streams for gaining maximum performance of this algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种确定数据流之间相关性的在线方法
实时流处理要求以最小的延迟处理结果。海量流是实时生成的,其中线性关系是通过相关性确定的。现有的方法用于关联静态数据集,如Kandell、Pearson、Spearman等。这些方法不足以解决无噪声的在线相关问题。在本文中,我们提出了一种在线有序相关方法,该方法具有单遍、避免从头开始重新计算、去除异常值和低内存要求等功能。该方法采用单次扫描技术,采用CRA算法实时确定两个特征向量之间的关联关系。CRA算法的时间复杂度为O(n),空间复杂度为O(1)。该算法用于减少流中的噪声或误差,并用作基于秩的相关性的替代。建议在流中具有不同的元素和较少的可变性,以获得该算法的最大性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sampling-based Label Propagation for Balanced Graph Partitioning ICPE '22: ACM/SPEC International Conference on Performance Engineering, Bejing, China, April 9 - 13, 2022 The Role of Analytical Models in the Engineering and Science of Computer Systems Enhancing Observability of Serverless Computing with the Serverless Application Analytics Framework Towards Elastic and Sustainable Data Stream Processing on Edge Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1