Performance evaluation of an HMM based OCR system

Q4 Computer Science 模式识别与人工智能 Pub Date : 1992-08-30 DOI:10.1109/ICPR.1992.201697
J. C. Anigbogu, A. Belaïd
{"title":"Performance evaluation of an HMM based OCR system","authors":"J. C. Anigbogu, A. Belaïd","doi":"10.1109/ICPR.1992.201697","DOIUrl":null,"url":null,"abstract":"Presents a performance analysis of a first order hidden Markov model based OCR system. Trade-offs between accuracy in terms of recognition rates and complexity in terms of the number of states in the model are discussed. For most fonts, optimal performance is achieved with 6-state models. With adequate heuristics and reliable post-processors, 5-state and even 4-state models give reasonable performances (up to 99.60% at 4-states).<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 8

Abstract

Presents a performance analysis of a first order hidden Markov model based OCR system. Trade-offs between accuracy in terms of recognition rates and complexity in terms of the number of states in the model are discussed. For most fonts, optimal performance is achieved with 6-state models. With adequate heuristics and reliable post-processors, 5-state and even 4-state models give reasonable performances (up to 99.60% at 4-states).<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于HMM的OCR系统性能评价
给出了一阶隐马尔可夫模型OCR系统的性能分析。讨论了在识别率方面的准确性和模型中状态数方面的复杂性之间的权衡。对于大多数字体,使用6状态模型可以实现最佳性能。有了足够的启发式和可靠的后处理器,5-状态甚至4-状态模型都能给出合理的性能(4-状态下高达99.60%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1