Projected Clustering Methods for Predicting Heart Disease

H. Lee, Jong Seol Lee, Hyun-Sup Kang, K. Ryu
{"title":"Projected Clustering Methods for Predicting Heart Disease","authors":"H. Lee, Jong Seol Lee, Hyun-Sup Kang, K. Ryu","doi":"10.17706/ijbbb.2019.9.2.73-81","DOIUrl":null,"url":null,"abstract":"Supervised and unsupervised learning techniques are increasingly applied to improve medical decision-making. Medical-recorded data also have accumulated large amount of information about patients and their medical conditions. Relationship and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this paper, we propose projected clustering method for generating clusters of similar bio-signal patterns from medical data to be analyzed and the various classification methods for reflecting information of heart signal on the classification/prediction model. The experiments show that the optimal cluster is constructed by applying PROCLUS algorithm and it has from 0.881 to 0.9 f1-value index of prediction under test data.","PeriodicalId":13816,"journal":{"name":"International Journal of Bioscience, Biochemistry and Bioinformatics","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioscience, Biochemistry and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/ijbbb.2019.9.2.73-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised and unsupervised learning techniques are increasingly applied to improve medical decision-making. Medical-recorded data also have accumulated large amount of information about patients and their medical conditions. Relationship and patterns within this data could provide new medical knowledge. Unfortunately, few methodologies have been developed and applied to discover this hidden knowledge. In this paper, we propose projected clustering method for generating clusters of similar bio-signal patterns from medical data to be analyzed and the various classification methods for reflecting information of heart signal on the classification/prediction model. The experiments show that the optimal cluster is constructed by applying PROCLUS algorithm and it has from 0.881 to 0.9 f1-value index of prediction under test data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测心脏病的预测聚类方法
监督和非监督学习技术越来越多地应用于改善医疗决策。医疗记录数据也积累了大量关于患者及其医疗状况的信息。这些数据中的关系和模式可以提供新的医学知识。不幸的是,很少有方法被开发和应用于发现这些隐藏的知识。本文提出了从待分析的医疗数据中生成相似生物信号模式聚类的投影聚类方法,以及在分类/预测模型上反映心脏信号信息的各种分类方法。实验表明,应用PROCLUS算法构建的最优聚类在测试数据下的预测指标在0.881 ~ 0.9 f1之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gender differences in stroke risk factors Efficacy of different chemical and non-chemical treatments for management of Galleria mellonella in stored combs Production system and milking structure influence on the quality of milk from farms in the mesoregion of central Goiás, Brazil Isolation and molecular characterization of zymomonas mobilise for bioethanol production from palm saps in some parts of Jos, Plateau state, Nigeria Assessment of aquaporin-4 and some biochemical parameters in diabetes mellitus type 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1