Fire protective performance of intumescent paint and ablative elastomer used for high pressure hydrogen composite cylinder

Dao D.-Q., T. Rogaume, J. Luche, F. Richard, L. B. Valencia, S. Ruban
{"title":"Fire protective performance of intumescent paint and ablative elastomer used for high pressure hydrogen composite cylinder","authors":"Dao D.-Q., T. Rogaume, J. Luche, F. Richard, L. B. Valencia, S. Ruban","doi":"10.3801/iafss.fss.11-794","DOIUrl":null,"url":null,"abstract":"The thermal degradation of epoxy resin/carbon fiber composites have been experimentally studied in ISO 5660 standard cone calorimeter. The influence of external heat fluxes on the reaction-to-fire properties of composite laminate is identified. Mass loss, time-to-ignition, specific mass loss rate, thermal response parameter and gasification heat were systematically measured and calculated. The four principal steps of the thermal degradation process of virgin composite are also analyzed and identified. In order to improve the reaction to fire of the composite for a safe hydrogen cylinder application, two insulating coatings (constituted by an intumescent paint or an ablative elastomer) have been applied on the exposure surface of composite. As a result, the thermal properties of composite (mass loss, time-to-ignition, SMLR peak amplitude and temperature at coating/composite interface) are improved significantly. Furthermore, the ablative elastomer represents a better fire protective performance than the intumescent paint one at low temperature. However, at high temperature conditions, the ablative layer is thermally broken and flaked away from the composite substrate, and so loses its protective performance. At low heat flux the intumescent paint shows slightly worse protective performance which becomes better than the ablative material at high heat flux conditions due to its very good bonding capacity to the composite surface.","PeriodicalId":12145,"journal":{"name":"Fire Safety Science","volume":"4 1","pages":"794-807"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3801/iafss.fss.11-794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The thermal degradation of epoxy resin/carbon fiber composites have been experimentally studied in ISO 5660 standard cone calorimeter. The influence of external heat fluxes on the reaction-to-fire properties of composite laminate is identified. Mass loss, time-to-ignition, specific mass loss rate, thermal response parameter and gasification heat were systematically measured and calculated. The four principal steps of the thermal degradation process of virgin composite are also analyzed and identified. In order to improve the reaction to fire of the composite for a safe hydrogen cylinder application, two insulating coatings (constituted by an intumescent paint or an ablative elastomer) have been applied on the exposure surface of composite. As a result, the thermal properties of composite (mass loss, time-to-ignition, SMLR peak amplitude and temperature at coating/composite interface) are improved significantly. Furthermore, the ablative elastomer represents a better fire protective performance than the intumescent paint one at low temperature. However, at high temperature conditions, the ablative layer is thermally broken and flaked away from the composite substrate, and so loses its protective performance. At low heat flux the intumescent paint shows slightly worse protective performance which becomes better than the ablative material at high heat flux conditions due to its very good bonding capacity to the composite surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压氢复合气瓶用膨胀漆和烧蚀弹性体的防火性能
用ISO 5660锥形量热计对环氧树脂/碳纤维复合材料的热降解进行了实验研究。确定了外热流密度对复合材料层合板反应性能的影响。系统地测量和计算了质量损失、点火时间、比质量损失率、热响应参数和气化热。分析并确定了原生复合材料热降解过程的四个主要步骤。为了提高氢气瓶安全应用中复合材料的防火性能,在复合材料的暴露表面涂上了两种绝缘涂层(由膨胀涂料或烧蚀弹性体组成)。结果表明,复合材料的热性能(质量损失、点火时间、SMLR峰值振幅和涂层/复合界面温度)得到了显著改善。此外,烧蚀弹性体在低温下的防火性能优于膨胀涂料。然而,在高温条件下,烧蚀层被热破坏并从复合基板上剥落,从而失去其保护性能。在低热流密度条件下,膨胀涂料的防护性能略差,但在高热流密度条件下,膨胀涂料与复合材料表面的结合能力较好,防护性能优于烧蚀材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling the Investigation of Structure Vulnerabilities to Wind- Driven Firebrand Showers in Wildland-Urban Interface (WUI) Fires Modeling of the pyrolysis of plywood exposed to heat fluxes under cone calorimeter Effective stress method to be used in beam finite elements to take local instabilities into account Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis Fundamental flame spread and toxicity evaluation of fire retarded polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1