Devito: Automated Fast Finite Difference Computation

Navjot Kukreja, M. Louboutin, Felippe Vieira, F. Luporini, Michael Lange, G. Gorman
{"title":"Devito: Automated Fast Finite Difference Computation","authors":"Navjot Kukreja, M. Louboutin, Felippe Vieira, F. Luporini, Michael Lange, G. Gorman","doi":"10.1109/WOLFHPC.2016.6","DOIUrl":null,"url":null,"abstract":"Domain specific languages have successfully been used in a variety of fields to cleanly express scientific problems as well as to simplify implementation and performance optimization on different computer architectures. Although a large number of stencil languages are available, finite difference domain specific languages have proved challenging to design because most practical use cases require additional features that fall outside the finite difference abstraction. Inspired by the complexity of real-world seismic imaging problems, we introduce Devito, a domain specific language in which high level equations are expressed using symbolic expressions from the SymPy package. Complex equations are automatically manipulated, optimized, and translated into highly optimized C code that aims to perform comparably or better than hand-tuned code. All this is transparent to users, who only see concise symbolic mathematical expressions.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"98 1","pages":"11-19"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/WOLFHPC.2016.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Domain specific languages have successfully been used in a variety of fields to cleanly express scientific problems as well as to simplify implementation and performance optimization on different computer architectures. Although a large number of stencil languages are available, finite difference domain specific languages have proved challenging to design because most practical use cases require additional features that fall outside the finite difference abstraction. Inspired by the complexity of real-world seismic imaging problems, we introduce Devito, a domain specific language in which high level equations are expressed using symbolic expressions from the SymPy package. Complex equations are automatically manipulated, optimized, and translated into highly optimized C code that aims to perform comparably or better than hand-tuned code. All this is transparent to users, who only see concise symbolic mathematical expressions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Devito:自动快速有限差分计算
领域特定语言已经成功地应用于各种领域,以清晰地表达科学问题,并简化在不同计算机体系结构上的实现和性能优化。尽管有大量的模板语言可用,但有限差分领域特定语言的设计已被证明具有挑战性,因为大多数实际用例需要超出有限差分抽象的附加功能。受现实世界地震成像问题复杂性的启发,我们引入了Devito,这是一种特定于领域的语言,在这种语言中,高级方程使用SymPy包中的符号表达式表示。复杂的方程被自动处理、优化并转换为高度优化的C代码,其目的是与手动调整的代码相当或更好。所有这些对用户来说都是透明的,他们只看到简洁的符号数学表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1121
期刊最新文献
The AHP-TOPSIS based DSS for selecting suppliers of information resources A mutual one-time password for online application Impact of Artificial Intelligence in COVID-19 Pandemic: A Comprehensive Review Structure and criteria defining business value in agile software development based on hierarchical analysis A Hybrid Collaborative Filtering Technique for Web Service Recommendation using Contextual Attributes of Web Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1