Boat Detection in Marina Using Time-Delay Analysis and Deep Learning

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2022-04-01 DOI:10.4018/ijdwm.298006
Romane Scherrer, Erwan Aulnette, T. Quiniou, J. Kasarhérou, Pierre Kolb, Nazha Selmaoui-Folcher
{"title":"Boat Detection in Marina Using Time-Delay Analysis and Deep Learning","authors":"Romane Scherrer, Erwan Aulnette, T. Quiniou, J. Kasarhérou, Pierre Kolb, Nazha Selmaoui-Folcher","doi":"10.4018/ijdwm.298006","DOIUrl":null,"url":null,"abstract":"An autonomous acoustic system based on two bottom-moored hydrophones, a two-input audio board and a small single-board computer was installed at the entrance of a marina to detect entering/exiting boat. Windowed time lagged cross-correlations are calculated by the system to find the consecutive time delays between the hydrophone signals and to compute a signal which is a function of the boats' angular trajectories. Since its installation, the single-board computer performs online prediction with a signal processing-based algorithm which achieved an accuracy of 80 %. To improve system performance, a convolutional neural network (CNN) is trained with the acquired data to perform real-time detection. Two classification tasks were considered (binary and multiclass) to both detect a boat and its direction of navigation. Finally, a trained CNN was implemented in a single-board computer to ensure that prediction can be performed in real time.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.298006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

An autonomous acoustic system based on two bottom-moored hydrophones, a two-input audio board and a small single-board computer was installed at the entrance of a marina to detect entering/exiting boat. Windowed time lagged cross-correlations are calculated by the system to find the consecutive time delays between the hydrophone signals and to compute a signal which is a function of the boats' angular trajectories. Since its installation, the single-board computer performs online prediction with a signal processing-based algorithm which achieved an accuracy of 80 %. To improve system performance, a convolutional neural network (CNN) is trained with the acquired data to perform real-time detection. Two classification tasks were considered (binary and multiclass) to both detect a boat and its direction of navigation. Finally, a trained CNN was implemented in a single-board computer to ensure that prediction can be performed in real time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时延分析和深度学习的码头船舶检测
在码头入口处安装了一个基于两个底系泊水听器、一个双输入音频板和一个小型单板计算机的自主声学系统,以探测进出船只。系统通过计算带窗时间滞后的相互关系,找到水听器信号之间的连续时间延迟,并计算出一个信号,该信号是船的角轨迹的函数。自安装以来,单板计算机使用基于信号处理的算法进行在线预测,准确率达到80%。为了提高系统性能,利用采集到的数据训练卷积神经网络(CNN)进行实时检测。考虑了两种分类任务(二元分类和多分类)来检测船只及其航行方向。最后,在单板计算机上实现经过训练的CNN,以确保能够实时进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1