Flow Vector Prediction Using EM Algorithms

Tarem Ahmed
{"title":"Flow Vector Prediction Using EM Algorithms","authors":"Tarem Ahmed","doi":"10.1109/ICC.2010.5501747","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of predicting the number, length and distribution of IP traffic flows some time into the future, based upon packets collected in the present. Two versions of the Expectation-Maximization (EM) algorithm are used to predict the mean flow length and complete flow distributions for subsequent timesteps. A model is first used to represent the histogram of flows corresponding to any given time interval, and the EM algorithms are then used to estimate the parameters of the model. The proposed algorithms are tested on a large number of commonly-available data traces and both show high prediction accuracy.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5501747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper considers the problem of predicting the number, length and distribution of IP traffic flows some time into the future, based upon packets collected in the present. Two versions of the Expectation-Maximization (EM) algorithm are used to predict the mean flow length and complete flow distributions for subsequent timesteps. A model is first used to represent the histogram of flows corresponding to any given time interval, and the EM algorithms are then used to estimate the parameters of the model. The proposed algorithms are tested on a large number of commonly-available data traces and both show high prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EM算法的流向量预测
本文考虑了基于当前收集的数据包来预测未来某个时间IP流量的数量、长度和分布的问题。两种版本的期望最大化(EM)算法用于预测后续时间步长的平均流长度和完整的流量分布。首先使用模型来表示对应于任何给定时间间隔的流的直方图,然后使用EM算法来估计模型的参数。本文提出的算法在大量常用数据轨迹上进行了测试,均显示出较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Server Selection Algorithm for P2P IPTV over Fiber to the Node (FTTN) Networks Joint Discrete Power-Level and Delay Optimization for Network Coded Wireless Communications Throughput and Stability Improvements of Slotted ALOHA Based Wireless Networks under the Random Packet Destruction Dos Attack TOA Based Joint Synchronization and Localization Amplify-And-Forward MIMO Relaying with OSTBC over Nakagami-m Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1