CeTUP: Controller-equipped Topology Update Process for Tactical Ad-hoc Networks

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc & Sensor Wireless Networks Pub Date : 2020-11-16 DOI:10.1145/3416011.3424752
Klement Streit, G. Rodosek
{"title":"CeTUP: Controller-equipped Topology Update Process for Tactical Ad-hoc Networks","authors":"Klement Streit, G. Rodosek","doi":"10.1145/3416011.3424752","DOIUrl":null,"url":null,"abstract":"Robust connectivity and sufficient bandwidth are not natural in most wireless network architectures. The increase of data rates that is mostly caused by multimedia traffic relying on QoS requirements complicates almost lossless delivery. Especially MANETs communications face these challenges, as nodes are moving at runtime. It is well known, that these network architectures have difficulties delivering time-critical data, since no central instance is in place. Bandwidth-demanding multimedia traffic easily causes stressed and overloaded network segments which result in bottlenecks and dropped packets. Introducing a SDN controller is a logical consequence to distribute traffic on nodes based on the knowledge of the entire topology. QoS requirements of all flows can be considered by the controller during routing. However, this brings up the question of how to keep the controller's topology up to date regarding lost and newly arisen connections since nodes are moving continuously. An outdated view of the topology results in deployed routes where no continuous connection between the nodes remains active. We therefore introduce CeTUP, a controller-equipped topology update process designed to provide an overview of the network as accurate as possible, before routing takes place by the controller. We show that this update process achieves QoS conform delivery rates even when nodes are moving at a speed of up to 60~km/h.","PeriodicalId":55557,"journal":{"name":"Ad Hoc & Sensor Wireless Networks","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc & Sensor Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3416011.3424752","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Robust connectivity and sufficient bandwidth are not natural in most wireless network architectures. The increase of data rates that is mostly caused by multimedia traffic relying on QoS requirements complicates almost lossless delivery. Especially MANETs communications face these challenges, as nodes are moving at runtime. It is well known, that these network architectures have difficulties delivering time-critical data, since no central instance is in place. Bandwidth-demanding multimedia traffic easily causes stressed and overloaded network segments which result in bottlenecks and dropped packets. Introducing a SDN controller is a logical consequence to distribute traffic on nodes based on the knowledge of the entire topology. QoS requirements of all flows can be considered by the controller during routing. However, this brings up the question of how to keep the controller's topology up to date regarding lost and newly arisen connections since nodes are moving continuously. An outdated view of the topology results in deployed routes where no continuous connection between the nodes remains active. We therefore introduce CeTUP, a controller-equipped topology update process designed to provide an overview of the network as accurate as possible, before routing takes place by the controller. We show that this update process achieves QoS conform delivery rates even when nodes are moving at a speed of up to 60~km/h.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
装备控制器的战术自组织网络拓扑更新过程
在大多数无线网络架构中,健壮的连接性和足够的带宽并不是很自然的。数据速率的增加主要是由依赖于QoS需求的多媒体流量引起的,这使得几乎无损的传输变得复杂。特别是manet通信面临这些挑战,因为节点在运行时移动。众所周知,由于没有中心实例,这些网络体系结构在交付时间关键型数据方面存在困难。对带宽要求很高的多媒体业务容易造成网段压力和过载,从而导致网络瓶颈和丢包。引入SDN控制器是基于整个拓扑知识在节点上分配流量的逻辑结果。控制器在路由过程中可以考虑所有流的QoS要求。然而,这带来了一个问题,即由于节点不断移动,如何使控制器的拓扑在丢失和新出现的连接方面保持最新。过时的拓扑视图导致部署的路由在节点之间没有持续的连接保持活跃。因此,我们引入CeTUP,这是一种配备控制器的拓扑更新过程,旨在在控制器进行路由之前尽可能准确地提供网络概述。我们表明,即使节点以高达60~km/h的速度移动,该更新过程也能达到QoS符合交付率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ad Hoc & Sensor Wireless Networks
Ad Hoc & Sensor Wireless Networks 工程技术-电信学
CiteScore
2.00
自引率
44.40%
发文量
0
审稿时长
8 months
期刊介绍: Ad Hoc & Sensor Wireless Networks seeks to provide an opportunity for researchers from computer science, engineering and mathematical backgrounds to disseminate and exchange knowledge in the rapidly emerging field of ad hoc and sensor wireless networks. It will comprehensively cover physical, data-link, network and transport layers, as well as application, security, simulation and power management issues in sensor, local area, satellite, vehicular, personal, and mobile ad hoc networks.
期刊最新文献
Enumeration of the Number of Spanning Trees of the Globe Network and its Subdivision A HYBRID OPTIMIZATION ALGORITHMS FOR SOLVING METRIC DIMENSION PROBLEM Detecting Malicious Use of DoH Tunnels Using Statistical Traffic Analysis RPL+: An Improved Parent Selection Strategy for RPL in Wireless Smart Grid Networks Prototype of deployment of Federated Learning with IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1