{"title":"SVM-SMO-SGD: A hybrid-parallel support vector machine algorithm using sequential minimal optimization with stochastic gradient descent","authors":"Gizen Mutlu, Çiğdem İnan Acı","doi":"10.1016/j.parco.2022.102955","DOIUrl":null,"url":null,"abstract":"<div><p><span>The Support Vector Machine<span><span> (SVM) method is one of the popular machine learning algorithms<span> as it gives high accuracy. However, like most machine learning algorithms, the resource consumption of the SVM algorithm in terms of time and memory increases linearly as the dataset grows. In this study, a parallel-hybrid algorithm that combines SVM, Sequential Minimal Optimization (SMO) with Stochastic Gradient Descent (SGD) methods have been proposed to optimize the calculation of the weight costs. The performance of the proposed SVM-SMO-SGD algorithm was compared with classical SMO and Compute Unified Device Architecture (CUDA) based approaches on the well-known datasets (i.e., Diabetes, Healthcare Stroke Prediction, Adults) with 520, 5110, and 32,560 samples, respectively. According to the results, Sequential SVM-SMO-SGD is 3.81 times faster in terms of time, and 1.04 times more efficient </span></span>RAM consumption than the classical </span></span>SMO algorithm<span>. The parallel SVM-SMO-SGD algorithm, on the other hand, is 75.47 times faster than the classical SMO algorithm in terms of time. It is also 1.9 times more efficient in RAM consumption. The overall classification accuracy of all algorithms is 87% in the Diabetes dataset, 95% in the Healthcare Stroke Prediction dataset, and 82% in the Adults dataset.</span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"113 ","pages":"Article 102955"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000485","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 9
Abstract
The Support Vector Machine (SVM) method is one of the popular machine learning algorithms as it gives high accuracy. However, like most machine learning algorithms, the resource consumption of the SVM algorithm in terms of time and memory increases linearly as the dataset grows. In this study, a parallel-hybrid algorithm that combines SVM, Sequential Minimal Optimization (SMO) with Stochastic Gradient Descent (SGD) methods have been proposed to optimize the calculation of the weight costs. The performance of the proposed SVM-SMO-SGD algorithm was compared with classical SMO and Compute Unified Device Architecture (CUDA) based approaches on the well-known datasets (i.e., Diabetes, Healthcare Stroke Prediction, Adults) with 520, 5110, and 32,560 samples, respectively. According to the results, Sequential SVM-SMO-SGD is 3.81 times faster in terms of time, and 1.04 times more efficient RAM consumption than the classical SMO algorithm. The parallel SVM-SMO-SGD algorithm, on the other hand, is 75.47 times faster than the classical SMO algorithm in terms of time. It is also 1.9 times more efficient in RAM consumption. The overall classification accuracy of all algorithms is 87% in the Diabetes dataset, 95% in the Healthcare Stroke Prediction dataset, and 82% in the Adults dataset.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications