P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL 物理化学学报 Pub Date : 2024-03-01 DOI:10.3866/PKU.WHXB202304044
Jia Wang, Qing Qin, Zhe Wang, Xuhao Zhao, Yunfei Chen, Liqiang Hou, Shangguo Liu, Xien Liu
{"title":"P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions","authors":"Jia Wang,&nbsp;Qing Qin,&nbsp;Zhe Wang,&nbsp;Xuhao Zhao,&nbsp;Yunfei Chen,&nbsp;Liqiang Hou,&nbsp;Shangguo Liu,&nbsp;Xien Liu","doi":"10.3866/PKU.WHXB202304044","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient synthetic routes for ammonia (NH<sub>3</sub>) production is the cornerstone of the modern industrial processes and human survival. Owing to the chemical inertness of nitrogen, the current ammonia industry suffers from high energy consumption and high CO<sub>2</sub> emission. Electrochemical nitrogen reduction reaction (NRR) provides a promising alternative to the energy-intensive Haber-Bosch (HB) process, enabling green and sustainable NH<sub>3</sub> production. However, a low NH<sub>3</sub> yield and limited energy conversion efficiency due to the chemical inertness of N<sub>2</sub> and competitive hydrogen evolution reaction (HER) are still critical challenges in artificial nitrogen fixation using the electrochemical NRR. Herein, we report a hole-enriched P-doped carbon (PC)-supported Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub> nanocomposite (<em>h</em>-PC/Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub>) for efficient electrocatalytic conversion of N<sub>2</sub> to NH<sub>3</sub> in both acidic and neutral media. Remarkably, the unique hierarchical porous structure of the <em>h</em>-PC/Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub> catalyst improves the surface roughness and facilitates the diffusion of N<sub>2</sub> within the catalyst layer, thereby prolonging the residence time of N<sub>2</sub> and improving the utilization of active sites. The uniform distribution of multiple components modulates the electronic structure of the active sites and optimizes the adsorption behavior of various reaction intermediates, enhancing the intrinsic activity of the catalyst. Benefiting from the porous structure and multicomponent active sites, including the Zn species and PC, the <em>h</em>-PC/Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub> achieves an excellent NRR performance with an NH<sub>3</sub> yield rate of 38.7 ± 1.2 μg∙h<sup>−1</sup>∙mg<sub>cat</sub><sup>−1</sup> and Faradaic efficiency (FE) of 19.8% ± 0.9% at −0.2 V <em>vs.</em> reversible hydrogen electrode (RHE) in 0.1 mol∙L<sup>−1</sup> HCl electrolyte. Moreover, it delivers a high NH<sub>3</sub> yield rate of 17.1 ± 0.8 μg∙h<sup>−1</sup>∙mg<sub>cat</sub><sup>−1</sup> with an FE of 15.9% ± 0.6% at −0.2 V <em>vs.</em> RHE in 0.1 mol∙L<sup>−1</sup> Na<sub>2</sub>SO<sub>4</sub> solution, which is superior to those of PC/Zn<sub>3</sub>P<sub>2</sub>, C/ZnO, and many other non-noble-metal-based electrocatalysts. <em>Ex situ</em> X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were conducted to monitor the changes in the composition and structure of <em>h</em>-PC/Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>/Zn<sub>2</sub>P<sub>2</sub>O<sub>7</sub> after being used in NRR. In particular, a new signal of N appeared in the XPS profile after NRR, confirming the occurrence of NRR. This work provides a new strategy for synchronously constructing mass transfer channels and coupling different active sites to synergistically enhance the NRR activity and selectivity of a catalyst, which is of great significance in progressing the industrialization of green ammonia production.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (121KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 3","pages":"Article 2304044"},"PeriodicalIF":13.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000663","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient synthetic routes for ammonia (NH3) production is the cornerstone of the modern industrial processes and human survival. Owing to the chemical inertness of nitrogen, the current ammonia industry suffers from high energy consumption and high CO2 emission. Electrochemical nitrogen reduction reaction (NRR) provides a promising alternative to the energy-intensive Haber-Bosch (HB) process, enabling green and sustainable NH3 production. However, a low NH3 yield and limited energy conversion efficiency due to the chemical inertness of N2 and competitive hydrogen evolution reaction (HER) are still critical challenges in artificial nitrogen fixation using the electrochemical NRR. Herein, we report a hole-enriched P-doped carbon (PC)-supported Zn3(PO4)2/Zn2P2O7 nanocomposite (h-PC/Zn3(PO4)2/Zn2P2O7) for efficient electrocatalytic conversion of N2 to NH3 in both acidic and neutral media. Remarkably, the unique hierarchical porous structure of the h-PC/Zn3(PO4)2/Zn2P2O7 catalyst improves the surface roughness and facilitates the diffusion of N2 within the catalyst layer, thereby prolonging the residence time of N2 and improving the utilization of active sites. The uniform distribution of multiple components modulates the electronic structure of the active sites and optimizes the adsorption behavior of various reaction intermediates, enhancing the intrinsic activity of the catalyst. Benefiting from the porous structure and multicomponent active sites, including the Zn species and PC, the h-PC/Zn3(PO4)2/Zn2P2O7 achieves an excellent NRR performance with an NH3 yield rate of 38.7 ± 1.2 μg∙h−1∙mgcat−1 and Faradaic efficiency (FE) of 19.8% ± 0.9% at −0.2 V vs. reversible hydrogen electrode (RHE) in 0.1 mol∙L−1 HCl electrolyte. Moreover, it delivers a high NH3 yield rate of 17.1 ± 0.8 μg∙h−1∙mgcat−1 with an FE of 15.9% ± 0.6% at −0.2 V vs. RHE in 0.1 mol∙L−1 Na2SO4 solution, which is superior to those of PC/Zn3P2, C/ZnO, and many other non-noble-metal-based electrocatalysts. Ex situ X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were conducted to monitor the changes in the composition and structure of h-PC/Zn3(PO4)2/Zn2P2O7 after being used in NRR. In particular, a new signal of N appeared in the XPS profile after NRR, confirming the occurrence of NRR. This work provides a new strategy for synchronously constructing mass transfer channels and coupling different active sites to synergistically enhance the NRR activity and selectivity of a catalyst, which is of great significance in progressing the industrialization of green ammonia production.
  1. Download: Download high-res image (121KB)
  2. Download: Download full-size image
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境条件下p掺杂碳负载ZnxPyOz的高效氨电合成
开发高效的氨(NH3)合成路线是现代工业过程和人类生存的基石。由于氮的化学惰性,目前的合成氨工业存在高能耗和高二氧化碳排放的问题。电化学氮还原反应(NRR)为能源密集型的Haber-Bosch (HB)工艺提供了一个有前途的替代方案,实现了绿色和可持续的NH3生产。然而,由于N2的化学惰性和竞争性析氢反应(HER), NH3产率低和能量转换效率有限仍然是利用电化学NRR人工固氮的关键挑战。本文报道了一种富空穴p掺杂碳(PC)负载的Zn3(PO4)2/Zn2P2O7纳米复合材料(h-PC/Zn3(PO4)2/Zn2P2O7),用于在酸性和中性介质中有效地电催化将N2转化为NH3。值得注意的是,h-PC/Zn3(PO4)2/Zn2P2O7催化剂独特的分层多孔结构提高了表面粗糙度,有利于N2在催化剂层内的扩散,从而延长了N2的停留时间,提高了活性位点的利用率。多组分的均匀分布调节了活性位点的电子结构,优化了各种反应中间体的吸附行为,提高了催化剂的本征活性。h-PC/Zn3(PO4)2/Zn2P2O7得益于多孔结构和包括Zn和PC在内的多组分活性位点,在−0.2 V下,NH3产率为38.7±1.2 μg∙h−1∙mgcat−1,与在0.1 mol∙L−1 HCl电解液中可逆氢电极(RHE)相比,Faradaic效率(FE)为19.8%±0.9%。在0.1 mol∙L−1 Na2SO4溶液中,在−0.2 V条件下,NH3产率为17.1±0.8 μg∙h−1∙mgcat−1,FE为15.9%±0.6%,优于PC/Zn3P2、C/ZnO等多种非贵金属基电催化剂。采用非原位x射线光电子能谱(XPS)、透射电镜(TEM)和x射线衍射(XRD)研究了h-PC/Zn3(PO4)2/Zn2P2O7在NRR中使用后的组成和结构变化。特别是在NRR后的XPS剖面中出现了一个新的N信号,证实了NRR的发生。本研究为同步构建传质通道和耦合不同活性位点协同提高催化剂的NRR活性和选择性提供了一种新的策略,对推进绿色合成氨工业化具有重要意义。下载:下载高分辨率图片(121KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
期刊最新文献
Machine learning potentials for property predictions of two-dimensional group-III nitrides Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries MOF/MOF nanosheets S-scheme heterojunction for accelerated charge kinetics and efficient photocatalytic H2 evolution 2D COF photocatalyst with highly stabilized tautomeric transition and singlet oxygen generation Charge transfer mechanism investigation of S-scheme photocatalyst using soft X-ray absorption spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1